
Revision 30 – 2011-03-25 – Mark Waddingham

iOS Deployment Release Notes (R36)

Table of Contents
Overview.. 4
Getting Started..5

Choosing an SDK.. 5
Configuring LiveCode... 5
Configuring an iOS standalone..6
Running in the simulator..7
A first project... 7
Building for a real device...8

Configuring an iOS Application...10
Setting plist options... 10
Adding a SpringBoard icon... 11
Adding a default launch image (commercial)..11
Adding a splash image (personal and educational)... 12
Adding a default launch image (trial).. 12
Adding custom fonts..13
Adding custom externals... 13
Copy files restrictions.. 13

General Engine Features...14
Engine version... 14
What doesn't work... 14
What does work... 14
Debugging..14
Windowing and Stacks.. 15
System Dialogs – answer and ask..15
Non-file URL access..16
Out-of-bounds group scrolling...17
Externals.. 17
Snapshots... 17

iOS-specific engine features...18
Multi-touch events... 18
Mouse events... 18
Motion events.. 18
Accelerometer support...19
Photo Picking Support... 19
Keyboard Input.. 20

Configuring keyboard type... 20
Activation notifications...21

Orientation handling.. 21
Auto-rotation support.. 21
Querying orientation... 22
Controlling auto-rotation...22
Orientation changed notification...23
Initial orientation handling..23

1

Revision 30 – 2011-03-25 – Mark Waddingham

Resolution handling... 23
Location handling.. 24
Email composition... 24

Basic support...24
Advanced support... 25

File and folder handling...26
System alert support...27
Basic sound playback support..27
Multi-channel sound support... 28

Playing Sounds..28
Channel Properties.. 29
Managing Channels...29

Video playback support... 30
URL launching support..30
Font querying support..31
Visual effect support.. 31
Status bar configuration support.. 31
Locale and system language query support... 32
Hardware and system version query support...32
Modal Pick-Wheel support.. 32
Idle Timer configuration.. 33
Querying camera capabilities...33
Clearing pending interactions.. 34
Network reachability checking (experimental)..34
iOS Native Controls...36

All controls (UIView)... 37
Properties..37

Browser control – UIWebView... 37
Properties..37
Actions..38
Messages.. 39

Scroller control – UIScrollView... 39
Properties..39
Actions..41
Messages.. 41

Player control – MPMoviePlayerController... 42
Properties..42
Actions..44
Messages.. 45

Input control – UITextField.. 45
Properties..45
Actions..48
Messages.. 48

Miscellaneous Information...50
Encryption Compliance – HTTPS... 50

Noteworthy Changes.. 51
Scrolling problems (R18)...51
Browser loadRequest changes (R18)...51

2

Revision 30 – 2011-03-25 – Mark Waddingham

URL progress parameter order (R18).. 51
Initial orientation handling (R20).. 51
Font metrics (R20)... 51
Out-of-bounds scrolling (R20)...51
Screen metrics (R25)... 52
Multi-channel sound playback (R29).. 52
'Exits on Suspend' support (R30)...52

Change Logs and History... 53
Engine Change History..53
iOS Deployment Change History.. 57
Document History..58

3

Revision 30 – 2011-03-25 – Mark Waddingham

Overview
LiveCode now incorporates facilities for deploying to iOS. These facilities include the ability to
build iOS applications that run in a variety of simulator versions as well as on iPhone, iPod Touch
and iPad devices.

In addition to supporting many of the desktop engine's features, the iOS engine hooks into many
iOS-specific features. Please see the iOS Specific Features section for more details.

For information on what parts of the Desktop feature set are currently implemented when deploying
to iOS, please see the What Works section.

Note: If you have not purchased the iOS deployment pack, you can still try out iOS deployment
features, but any built apps will have a forced banner for 5 seconds on startup, and will quit after
one minute.

Note: iOS deployment is only supported on Macs running the latest versions of Leopard or Snow
Leopard and require installation of an appropriate iOS SDK.

4

Revision 30 – 2011-03-25 – Mark Waddingham

Getting Started

Choosing an SDK

Before you can use iOS deployment, you need to install the appropriate iOS SDKs available from
Apple.

In order to get the iPhone SDK, you need to be 'registered iPhone developer'. You can register for
this and download the SDK by visiting:

http://developer.apple.com/ios

LiveCode supports the following iOS SDKs:

Download Platform Simulators
Xcode 3.2.6 and iOS 4.3 Snow Leopard 4.3, 4.2, 4.1, 4.0, 3.2
Xcode 3.2.5 and iOS 4.2 Snow Leopard 4.2, 4.1, 4.0, 3.2
Xcode 3.2.4 and iOS 4.1 Snow Leopard 4.1, 4.0, 3.2
Xcode 3.2.1 and iOS 3.1.3 Snow Leopard 3.1.3
Xcode 3.1.4 and iOS 3.1.3 Leopard 3.1.3
Make sure you have at least one SDK installed, otherwise you will not be able to use the iOS
deployment feature.

If you wish to test applications in all versions of the simulator (3.1.3, 3.2, 4.0, 4.1 and 4.2) then it is
necessary to be running on Snow Leopard, and to have installed the iOS 4.2 SDK and the iOS 3.1.3
SDK in separate locations.

Note: As a registered iOS developer you will be able to develop and run applications in the iPhone
Simulator only. To build applications that can be run on an actual device you will need to enroll in
the iOS Developer Programme.

Configuring LiveCode

After you have installed an iOS SDK, it is necessary to tell LiveCode where to find it (or them, if
you have installed more than one).

5

http://developer.apple.com/ios
http://developer.apple.com/ios/download.action?path=/iphone/iphone_sdk_3.1.3__final/iphone_sdk_3.1.3_with_xcode_3.1.4__leopard__9m2809a.dmg
http://developer.apple.com/ios/download.action?path=/iphone/iphone_sdk_3.1.3__final/iphone_sdk_3.1.3_with_xcode_3.2.1__snow_leopard__10m2003a.dmg
http://developer.apple.com/ios/download.action?path=/ios/ios_sdk_4.1__final/xcode_3.2.4_and_ios_sdk_4.1.dmg
http://developer.apple.com/ios/download.action?path=/ios/ios_sdk_4.2__final/xcode_3.2.5_and_ios_sdk_4.2_final.dmg
http://developer.apple.com/devcenter/download.action?path=/ios/ios_sdk_4.3_gm_seed/xcode_3.2.6_and_ios_sdk_4.3_gm_seed.dmg

Revision 30 – 2011-03-25 – Mark Waddingham

To configure the paths to your installed SDKs, use the Mobile Support panel in Preferences.

Use this pane to choose the correct SDK paths by using the '…' buttons next to the appropriate one.
You should choose the folder you selected when installing the SDK. (This defaults to '/Developer' in
the iOS SDK installers).

When you have successively chosen your SDK(s), the list of simulators that you will have available
will be updated.

Note: On startup if SDKs have not been previously configured, LiveCode will check to see if there is
a recognised SDK at /Developer.

Configuring an iOS standalone

To configure a stack for iOS, you use the new iOS deployment pane in the Standalone Application
Settings dialog, available from the File menu:

This pane allows you to set the iOS-specific options for your application. You can also add files you

6

Revision 30 – 2011-03-25 – Mark Waddingham

wish to be included in the bundle using the Copy Files pane, and set the (bundle) name of your
application on the General pane.

To make a stack build for iOS, simply check the Build for iOS button and configure any options that
you wish.

Note: Making a stack build for iOS disables building for any other platform, however this is only
true of the standalone's mainstack. If you wish to share code and resources among platforms,
simply factor your application into multiple stacks, using a different mainstack for iOS and desktop
targets.

Note: The Inclusions, Copy Referenced Files, Bug Reports and Stacks features are not available
when building for iOS. If you wish to include multiple stackfiles in your application, use the Copy
Files feature instead.

Running in the simulator

Once you have a stack configured for iOS, you can run it in the iOS Simulator by using the
Simulate button on the menubar:

This button will be enabled for any stack that has been configured for iOS deployment, and clicking
it will launch the stack in the simulator, terminating a running simulation if any.

You can also access the Simulate action from the Development menu. Additionally this is where
you can configure which simulator version to use:

Here you can choose both version, and device type you wish to simulate. (Be aware that 3.2 is iPad
only, and only 4.2 supports both iPad and iPhone/iPod Touch). Any setting you choose here will
take effect the next time you use the Simulate button or menu-item.

Note: If the Simulate button or menu-item remains disabled, even if you have configured a stack for
iOS deployment, it probably means you haven't configured your SDKs correctly. In this case, check
that there are available simulators in the Mobile Support pane of Preferences.

A first project

Once you have installed an iOS SDK and configured LiveCode for it, it is easy to run a simple
project:

7

Revision 30 – 2011-03-25 – Mark Waddingham

1. Create a new main stack via File > New Mainstack.

2. Rename your new main stack to Hello World

3. Drag and drop a button onto the new main stack, and call it Click Me

4. Edit the Click Me button script and enter the following:

on mouseUp
 answer "Hello World!" with "ok"
end mouseUp

5. Save the Hello World stack.

6. Bring up the Standalone Application Settings dialog from the File menu, switch to the iOS
pane and make sure 'Build for iOS' is checked.

7. Make sure your test stack is active and then click Simulate on the menubar.

8. Click the Click Me button in the simulator to see your script in action!

You can try the stack out in different versions of the simulator, simply by selecting the version you
want from the Development menu.

Building for a real device

Before you can begin testing your application on a real device, you will need to have several things
in place:

1. Enrolment in the iPhone Developer Programme: this is required so that you can generate the
necessary certificates and profiles.

2. A iPhone Developer Certificate: this is installed on your development machine and is used
to digitally sign the application you wish to put onto an iPhoneOS device. Follow the
instructions on the Certificates tab of the iPhone Developer Program Portal.

3. Registration of at least one iPhoneOS device in the program portal. You can add devices
using the Devices tab of the iPhone Developer Program Portal.

4. An App ID for your application. You can create App IDs using the App IDs tab of the
iPhone Developer Program Portal. (Note that at this stage it isn't necessary for you to have
a separate App ID for every app – you can use a single id for all your apps for
testing/development purposes.)

5. A provisioning profile tying together your test device's id, you app id and your certificate.
These can be created using the Provisioning tab of iPhone Developer Program Portal.

Once you have all these things ready, you should find that the 'Profile' drop-down menu in the iOS
pane of the Standalone Settings dialog is populated with any provisioning profiles you have
installed.

With a suitable profile chosen, you can simply use the Save as Standalone Application... item in the
File menu to build an iOS app bundle in the same was as you would build a standalone for any
other platform.

The next thing to do is to install the bundle on your test device. To do this, start up Xcode, and
choose Window > Organizer. This will bring an interface allowing you to manage the applications,
devices and profiles you are using for development.

8

Revision 30 – 2011-03-25 – Mark Waddingham

Next, make sure you have your test device connected to your machine and choose it from the left
hand list. If you haven't used the device for development before, you will be prompted to do so, and
you'll then be presented with a list of installed applications.

To get your newly prepared application on the device, simply drag the application bundle from the
desktop into the Applications list – opting to install the appropriate provisioning profile if it has not
been previously installed on the device.

Finally, navigate to the application on your device, and start it up!

9

Revision 30 – 2011-03-25 – Mark Waddingham

Configuring an iOS Application

Setting plist options

All iOS applications have a plist that is built into the application bundle which controls many
aspects of the applications requirements and functionality. To set the plist up, you simply use the
options presented in the Standalone Builder's iOS pane, these will be used to construct a suitable
plist automatically:

Here the numbered items are as follows:

1. The string to display as the label of the application on the SpringBoard
(CFBundleDisplayName).

2. The bundle identifier to use for the application, in conjunction with the App Id present in a
provisioning profile, this uniquely identifies an application (CFBundleId).

3. The version of the application (CFBundleVersion).

4. The icon to display on the SpringBoard, see Adding a SpringBoard icon for more details
(CFBundleIconFile and CFBundleIconFiles).

5. The image to use as the launch image (commercial), or the image to incoporate as the splash
image (personal and educational), see Adding a default launch image or Adding a splash
image for more details.

6. The provisioning profile to use when building the application to run on a device.

7. The extensions to include in the application:

i. Choose 'revZip' if you are using any of the revZip commands and functions.

ii. Choose 'revXML' if you are using any of the revXML commands and functions.

iii. Choose 'SQLite' if you are using revDB along with the dbSQLite database driver.

8. The initial orientation to start the application up in (UIInterfaceOrientation).

10

Revision 30 – 2011-03-25 – Mark Waddingham

9. The set of (initial) interface orientations your application supports, iOS uses this key to
determine what launch image to display (UISupportedInterfaceOrientations).

10. The initial visibility state of the status bar (UIStatusBarHidden).

11. The initial status bar style (UIStatusBarStyle).

12. The devices supported by the application, iOS uses this to determine if an application should
launch on iPod/iPhones and whether it should run in iPod/iPhone emulation mode on iPads
(UIDeviceFamily).

13. The minimum iOS version required by the application (MinimumOSVersion)

14. Determines whether the application requires a persistent WiFi connection
(UIRequiresPersistentWiFi)

15. Determines whether the 'Shared Files' feature of iTunes is enabled for this application
(UIFileSharingEnabled).

16. Determines whether the SpringBoard icon already has a tint and gloss applied.
(UIPrerenderedIcon).

17. These options determine what facilities the application requires or prohibits on the device in
order to be launched (UIRequiredDeviceCapabilities).

More details of the plist options can be found in the iOS Reference Document.

Adding a SpringBoard icon

All applications currently installed on an iOS device are displayed on the SpringBoard – the home
screen user interface you get presented with when the device is switched on.

Depending on what devices your application runs you should provide between 1 and 3 icons:

• <name>.png – a 57x57 icon for use on old (non-Retina) iPods and iPhones

• <name>-114.png – a 114x114 icon for use on Retina display capable iPods and iPhones

• <name>-72.png – a 72x72 icon for use on iPads

Here, <name> is anything you choose, the plugin will copy the files into the app bundle with the
correct final name to be picked up by the OS.

You should always provide a 57x57 icon, and the plugin will automatically look for appropriately
named icons at the other sizes to include.

Adding a default launch image (commercial)

On startup of an iOS application the SpringBoard will initially display a static image – this image
stays on screen until the application has completely finished initializing and is ready to update the
screen.

If you are using a commercial license then you have complete control over the launch image. You
should provide between 1 and 4 images as follows:

• <name>.png – a 320x480 image for use on old (non-Retina) iPods and iPhones

• <name>@2x.png – a 640x960 image for use on Retina display capable iPods and iPhones

11

http://developer.apple.com/library/ios/#documentation/general/Reference/InfoPlistKeyReference/Introduction/Introduction.html%23//apple_ref/doc/uid/TP40009248-SW1

Revision 30 – 2011-03-25 – Mark Waddingham

• <name>-Portrait.png – a 768x1024 image for use on iPads when in portrait mode

• <name>-Landscape.png – a 1024x768 image for use on iPads when in landscape mode

Here, <name> is anything you choose, the plugin will copy the files into the app bundle with the
correct final name to be picked up by the OS.

Adding a splash image (personal and educational)

If you are using a personal or educational license, then you are restricted in what can be displayed
as the launch image. In this case you should provide a (square) PNG image that will be placed
inside a LiveCode branded banner (see below).

The plugin automatically generates a collection of launch images using this image depending on the
target device settings you have specified in the plist.

We recommend providing an image of 600x600 for the splash – this will give good results when
resampled at the various resolutions and sizes required by the different iOS devices.

Note: With these license types, the generated launch image will remain on screen for 5 seconds
before being dismissed.

Adding a default launch image (trial)

If you are evaluating the iOS deployment feature using a trial license, then you cannot configure a
splash or launch image. Instead, all such applications will be built with the following launch image:

12

Revision 30 – 2011-03-25 – Mark Waddingham

This image will remain on screen for 5 seconds before the application launches, and the application
will quit after one minute.

Adding custom fonts

In iOS 3.2 and later, the ability was introduced to allow applications to bundle custom fonts which
then become available to the app (and only that app) while it is running.

To take advantage of this feature, all you need to do is reference the files of any fonts you wish to
include in the Copy Files pane. These files can either be a direct file reference, or contained in one
of the folder references. The Standalone Builder will treat any files that end with the extension ttf or
ttc as font files to use in this way.

Any fonts included in this way will appear in the fontNames and can be used in the same way as
any other font on the system.

Important: Make sure you have an appropriate license for the fonts you choose to bundle with your
app like you would any other media such as sounds, images and videos.

Adding custom externals

More details about developing and adding custom externals to apps will be made available in due
course in concert with an updated Externals SDK.

Copy files restrictions

It appears that (at least) the simulator does not like specific folder names being present at top-level
inside the app-bundle. In particular, attempting to copy files in that result in a top-level folder called
'resources' (any case) will cause simulation to fail.

To help identify these cases, the Copy Files pane will warn you when you add files that could cause
this issue. Additionally, when an app is built (either for simulation or for deployment) an
appropriate error message will be displayed and the operation will cease.

Note: At this stage we do not know if this problem is limited to 'resources' or whether there are
others too. If you find you get an 'unknown error' when trying to simulate, try renaming some of
your top-level 'copy files' folders and see if it goes away. If it does please let us know what folder
names caused the problem so we can add them to our checks.

13

Revision 30 – 2011-03-25 – Mark Waddingham

General Engine Features

Engine version

The current release of the iOS engine was derived from the 4.0 version of the desktop engine. This
means that features present in 4.5.x that you might expect to work in the iOS engine will not be
present at this time. In particular, the engine version is fixed at 4.0.0 and the build number at 950.

We are working on reintegrating the iOS port of the engine with the main desktop engine, and
versioning will once again become unified in a future release.

What doesn't work

The following features have no effect:

• clipboard related syntax and functionality (planned for a future release)

• drag-drop related syntax and functionality (no support on mobile devices)

• printing syntax and functionality (planned for a future release)

• setting the mouseLoc (no support on mobile devices)

• backdrop related syntax and functionality (no support on mobile devices)

• cursor related syntax and functionality (no support on mobile devices)

• socket syntax and functionality (planned for a future release)

• audioclips/videoclips/player functionality (use the 'play' and 'play video' syntax described
later)

• strong encryption support (planned for a future release)

• dbMysql, dbPostgreSQL, dbODBC and custom externals (planned for a future release)

• paint tools (planned for a future release)

What does work

The following things do work as expected:

• rendering of controls with non-system themes (default is Motif theme)

• date and time handling

• gradients, graphic effects and blending

• any non-platform, non-system dependent syntax (maths functions, string processing
functions, behaviors etc.)

• revZip, revXML and dbSqlite

Debugging

At present the options available for debugging applications running on target devices is limited.

14

Revision 30 – 2011-03-25 – Mark Waddingham

Obviously, scripts will work in a similar fashion between Desktop and Mobile so this helps.

There is, however, a simple means of logging from an emulated target device. The LiveCode
command form:

put string

Will write the string out to the standard error stream. These messages will be visible in Console.app
when running in the simulator, and in the Console tab of the Xcode Organizer for a given target
device while it is connected to the host computer.

Windowing and Stacks

The mobile engine uses a very simple model for window management: only one stack can be
displayed at a time.

The stack that is displayed is the most recent one that has been targeted with the go command.

The currently active stack will be the target for all mouse and keyboard input, as well as be in
receipt of a resizeStack message should the orientation or layout of the screen change.

The modal command can also still be used, and will cause the calling handler to block until the
modal'ed stack is closed as with the normal engine. Note, however, that performing a further go
stack from a modal'ed stack will cause the new stack to layer above the modal stack – this will
likely cause many headaches, so it is probably best to avoid this case!

At this time menus and other related popups will not work correctly, as these are implemented in the
engine (essentially) as a specialized form of go stack they will cause the current stack to be overlaid
completely, with various undesirable side-effects.

Note: The 'go in window' form of the 'go stack' command will not work correctly in the iOS and
must not be used. Since there is only one stack/window displayed at once on this platform, a generic
'go stack' should be used instead.

System Dialogs – answer and ask

The iOS engine supports a restricted version of the answer and ask commands – both using the
system-provided UIAlertView class.

The answer command can be used in this form:

answer message [with button and …] [titled title]

This will use the iPhone standard alert popup with the given buttons and title. The last button
specified will be marked as the default button.

The ask command can be used in this form:

ask [question | password] prompt [with initialAnswer] [titled title]

If neither question nor password is specified, question is assumed. The value entered by the user
will be retured in it. If the user cancelled the dialog, the result will contain cancel.

Note: You cannot nest calls to ask/answer on iOS. If you attempt to open an ask or answer dialog
while one is showing, the command will return immediately as if the dialog had been cancelled.

15

Revision 30 – 2011-03-25 – Mark Waddingham

Non-file URL access

The iOS engine has support for fetching urls, posting to urls and downloading urls in the
background. Note that the iOS engine does not support libUrl, and as such there are some
differences between url handling compared to the desktop.

The iOS engine supports the following non-file URL access methods:

• GET for http, https and ftp URLs

• POST for http and https URLs

• PUT for ftp URLs

Note: When using URLs for these protocols be aware that the iOS system functions used to provide
them are much stricter with regards the format of URLs – they must be of the appropriate form as
specified by the RFC standards. In particular, in FTP urls, be careful to ensure you urlEncode any
username and password fields appropriately (libUrl will allow characters such as '@' in the
username portion and still work – iOS will not be so forgiving).

To fetch the google home page you can do:

put url ("http://www.google.com") into tGooglePage

To post data to a website, you can use:

post tData to url tMyUrl

To upload a file to an FTP server you can use:

put tData into url "ftp://ftp.myftpserver.com"

To download a url in the background, you can use:

load url tMyUrl with message "myUrlDownloadFinished"

Note that, the callback message received after a load url will be of the form:

myUrlDownloadFinished url, status, data

Here, data is the actual content of the url that was fetched (assuming an error didn't occur).

Progress updates on ongoing url requests are communicated via the urlProgress message. This
message is periodically sent to the object whose script initiated the operation. It can have the form:

urlProgress url, "contacted"

urlProgress url, "requested"

urlProgress url, "loading", bytesReceived , [bytesTotal]

urlProgress url, "uploading", bytesReceived, [bytesTotal]

urlProgress url, "downloaded"

urlProgress url, "uploaded"

urlProgress url, "error", errorMessage

Note that pBytesTotal will be empty if the web server does not send the total data size.

You can also download a url direct to a file – this is particularly useful when downloading large
files since the normal 'url' chunk downloads into memory. To do this use:

16

http://www.google.com/

Revision 30 – 2011-03-25 – Mark Waddingham

libUrlDownloadToFile url, filename

Unlike the libUrl command of the same name, this command will block until the download is
complete, and will notify progress through the urlProgress message as described above.

When using GET and POST with http(s) URLs you can use the httpHeaders global property to
configure the headers to send. This works the same as the desktop engine, any specified headers
overriding those of the same key that would normally be sent, and any new keys being appended.

Note: The order of the arguments passed to urlProgress changed in revision 18, to make them
consistent with other callbacks, and also with the libUrl status callback.

Out-of-bounds group scrolling

Two properties unboundedHScroll and unboundedVScroll now enable you to configure whether
scroll values for a group can be set to values outside of the actual content bounds. This makes it
much easier to support the standard iOS bouncing features in scrollers.

This change has been made to both the iOS engine, and the main desktop engine. See the main
release notes for more details.

Externals

The revZip, revXML and dbSqlite (via revDB) externals can now be used on iOS.

To include these components, simply check the appropriate boxes on the iOS Standalone Settings
Pane.

Note: Like the iOS engine itself, the iOS externals are currently derived from those which shipped
with version 4.0.

Snapshots

The iOS engine supports both the object and screen snapshot variants of the import and export
snapshot commands.

To fetch a snapshot of an object use:

import snapshot from [rectangle rect of] object

export snapshot from [rectangle rect of] object

To fetch a snapshot of the screen use:

import snapshot from rectangle rect

export snapshot from rectangle rect

In the screen snapshot case, co-ords are given relative to the top-left of the screen and include the
status bar.

Note: There does not seem to be a way to render the status bar without using private features of the
iOS API. Therefore, if your snapshot rectangle includes part of the screen where the status bar is, it
will be clipped out.

17

Revision 30 – 2011-03-25 – Mark Waddingham

iOS-specific engine features
This version of the LiveCode iOS engine includes a wide-range of features specific to iOS devices.
These are described in the following sections.

Multi-touch events

Touches can be tracked in an application by responding to the following messages:

• touchStart id

• touchMove id, x, y

• touchEnd id

• touchRelease id

The id parameter is a number which uniquely identifies a sequence of touch messages
corresponding to an individual, physical touch action. All such sequences start with a touchStart
message, have one or more touchMove messages and finish with either a touchEnd or a
touchRelease message.

A touchRelease message is sent instead of a touchEnd message if the touch is cancelled due to an
incoming event such as a phone-call.

No two touch sequences will have the same id, and it is possible to have multiple (interleaving)
such sequences occurring at once. This allows handling of more than one physical touch at once
and, for example, allows you to track two fingers moving on the iPhone's screen.

The sequence of touch messages is tied to the control in which the touch started, in much the same
way mouse messages are tied to the object a mouse down starts in. The test used to determine what
object a touch starts in is identical to that used to determine whether the pointer is inside a control.
In particular, invisible and disabled controls will not considered viable candidates.

Mouse events

The engine will interpret the first touch sequence in any particular time period as mouse events in
the obvious way: the start of a touch corresponding to pressing the primary mouse button, and the
end of a touch corresponding to releasing the primary mouse button.

This means that all the standard LiveCode controls will respond in a similar way as they do in the
desktop version – in particular, you will receive the standard mouse events and the mouseLoc will
be kept updated appropriately.

Note that touch messages will still be sent, allowing you to choose how to handle input on a per-
control basis.

Motion events

An application can respond to any motion events generated by iPhoneOS by using the following
messages:

• motionStart motion

18

Revision 30 – 2011-03-25 – Mark Waddingham

• motionEnd motion

• motionRelease motion

Here motion is the type of motion detected by the device. As of iPhoneOS 3.0, the only motion that
is generated is "shake".

When the motion starts, the current card of the defaultStack will receive motionStart and when the
motion ends it will receive motionEnd. In the same vein as the touch events, motionRelease is sent
instead of motionEnd if an event occurs that interrupts the motion (such as a phone call).

Accelerometer support

You can enable or disable the iPhone's internal accelerometer by using:

iphoneEnableAccelerometer [interval]

iphoneDisableAccelerometer

Enabling the accelerometer will cause accelerationChanged events to be delivered to the current
card of the defaultStack at the specified interval. The interval should be specified in seconds, and is
the approximate time between delivery of messages. Note that the interval is constrained by
hardware-specific minimums and maximums (which are left unspecified by Apple).

The accelerationChanged message takes a single parameter pSample, which consists of four
values:

x,y,z,t

Here x, y and z are the acceleration along those axes relative to gravity. The t value is a relative
measurement of how much time has passed – you can use the difference between the time values in
two accelerationChanged events to give an indication of how much time passed between the
samples.

Photo Picking Support

You can hook into the iPhone's native photo picker by using

iPhonePickPhoto source, [maxwidth, [maxheight]]

Here source is one of:

• library – the photo is taken from the device's photo library

• camera – the photo is taken using the device's default camera

• rear camera – the photo is taken using the device's rear camera (if present)

• front camera – the photo is taken using the device's front camera (if present)

• album – the photo is taken from the device's recent camera roll

The maxwidth and maxheight parameters constrain the maximum size of an image. The chosen
image will be scaled down proportionally to fit within the size specified. If either size specified is 0,
then the parameter is ignored.

If the source type isn't available on the target device, the command will return with result "source
not available". If the user cancels the pick, the command will return with result "cancel". Otherwise

19

Revision 30 – 2011-03-25 – Mark Waddingham

a new image object will be created on the current card of the default stack containing the chosen
image.

When running on an iPhone, the photo-picker is displayed using the standard iOS fullscreen overlay
view.

When running on an iPad, the photo-picker is displayed using a standard iOS pop-over. In this case,
the pop-over is positioned relative to the rect of the target at the time the iphonePickPhoto
command was called.

Note: The image object is cloned from the templateImage, so you can use this to configure settings
before calling the picker.

Keyboard Input

Surprisingly, the SDK does not provide direct control over the iPhoneOS software keyboard.
However, an attempt has been made to provide some level of support for text input entry. If you
have a text field which is focusable (traversalOn true), then whenever it has focus the iPhone
keyboard will appear and allow basic text editing functionality.

While it is possible to use the non-Roman keyboards to enter text, for scripts which have combining
and/or input method type requirements the input will be incorrect. For example, languages such as
Russian can be entered correctly, but Korean will not work as expected.

The auto-capitalization, auto-correction, copy/paste, undo/redo and selection point magnification
features that are present in standard iPhone text entry fields are not supported.

Configuring keyboard type

You can configure the type of keyboard that will be displayed by using the
iphoneSetKeyboardType command:

iphoneSetKeyboardType type

Where type is one of:

• default – the normal keyboard

• alphabet – the alphabetic keyboard

• numeric – the numeric keyboard with punctuation

• url – the url entry keyboard

• number – the number pad keyboard

• phone – the phone number pad keyboard

• contact – the phone contact pad keyboard

• email – the email keyboard

• decimal – the decimal numeric pad keyboard (iOS 4.1+)

The keyboard type setting takes effect the next time the keyboard is shown – it does not affect the
currently displaying keyboard, if any.

Similarly you can configure the type of return key displayed on the keyboard using the

20

Revision 30 – 2011-03-25 – Mark Waddingham

iphoneSetKeyboardReturnKey command:

iphoneSetKeyboardReturnKey returnKey

Where returnKey is one of:

• default – the normal return key

• go – the 'Go' return key

• google – the 'Google' return key

• join – the 'Join' return key

• next – the 'Next' return key

• route – the 'Route' return key

• search – the 'Seach' return key

• send – the 'Send' return key

• yahoo – the 'Yahoo' return key

• done – the 'Done' return key

• emergency call – the 'emergency call' return key

Again, setting the return key only takes effect the next time the keyboard is shown.

If you wish to configure the keyboard options based on the field that is being focused, simply use
the commands in an openField handler of the given field. The keyboard is only shown after this
handler returns, so it is the ideal time to configure it.

Activation notifications

The following messages will be sent to the current card of the default stack when the keyboard is
shown or hidden:

keyboardActivated

keyboardDeactivated

Handle these messages to move controls or change the display layout to take account of the
restricted screen area that will be available.

Orientation handling

The iOS engine includes support for automatic handling of changes in orientation and in so doing
gains use of the smooth iOS standard animation rotation animation (note this replaces the previous
approach of using iphoneRotateInterface which no longer does anything).

Example: You can find a simple stack using the orientation handling features in the IDE resources
folder (open using the Help > Example Stacks and Resources menu item). The stack can be found
at: Mobile Examples/Orientation Example.livecode

Auto-rotation support

You can configure which orientations your application supports, and also lock and unlock changes

21

Revision 30 – 2011-03-25 – Mark Waddingham

in orientation.

The engine will automatically rotate the screen whenever the following are true.

• it detects an orientation change

• the orientation is in the currently configured 'allowed' set

• the orientation lock is off

Such a rotation may result in a resizeStack message being sent since rotating at 90 degrees switches
width and height.

Querying orientation

You can fetch the current device orientation using the iphoneDeviceOrientation() function. This
returns one of:

• unknown – the orientation could not be determined

• portrait – the device is being held upward with the home button at the bottom

• portrait upside down – the device is being held upward with the home button at the top

• landscape left – the device is being held upward with the home button on the left

• landscape right – the device is being held upward with the home button on the right

• face up – the device is lying flat with the screen upward

• face down – the device is lying flat with the screen downward

Similarly, you can fetch the current interface orientation using the iphoneOrientation() function.
This returns one of portrait, portrait upside down, landscape left and landscape right. With the
same meanings as for device orientation.

Controlling auto-rotation

To configure which orientations your application supports use:

iphoneSetAllowedOrientations orientations

Here orientations must be a comma-delimited list consisting of at least one of portrait, portrait
upside down, landscape left and landscape right. The setting will take effect the next time an
orientation change is effected – the interface's orientation will only be changed if the new
orientation is among the configured list. You can query the currently allowed orientations with the
iphoneAllowedOrientations() function.

To lock or unlock orientation changes for a time use:

iphoneLockOrientation and iphoneUnlockOrientation

The orientation lock is nestable, and when an unlock request causes the nesting to return to zero, the
interface will rotate to match the devices current orientation (assuming it is in the set of allowed
orientations). You can query the current orientation lock state with the iphoneOrientationLocked()
function.

22

Revision 30 – 2011-03-25 – Mark Waddingham

Orientation changed notification

An application will receive an orientationChanged message if the device detects a change in its
position relative to the ground, and you can use the iphoneDeviceOrientation() function to find out
the current orientation. This message is sent to the current card of the default stack.

The orientationChanged message is sent before any automatic interface rotation takes place thus
changes to the orientation lock state and allowed set can be made at this point and still have an
effect. If you wish to perform an action after the interface has been rotated, then either do so on
receipt of resizeStack, or by using a send in 0 millisecs message.

Initial orientation handling

On startup, the engine reads the settings of 'initial orientation' and 'supported orientations' from the
plist (as configured by the iOS standalone settings pane). It uses the supported orientations it finds
to initialize the orientations allowed by autorotation (i.e. iphoneSetAllowedOrientations), and the
initial orientation it finds to ensure the interface starts the correct way round.

To ensure that your application works in only specific orientations from the outset, you need only
configure the options in the standalone builder. In particular, you need take no further action in
script.

Note: Prior to R20, you had to place some code in the startup handler to lock an application to a
given orientation. This should be removed when building with this release as it is no longer
necessary and might cause unwanted behavior.

Resolution handling

The new iPhone 4 has a display with double the resolution in both horizontal and vertical directions.
By default, iOS handles this by mapping one logical 'point' to two physical 'pixels' with applications
(rev included) interpreting everything in terms of logical points. This means that apps targetted for
older devices will run identically on the newer iPhone 4 devices.

As the screenRect and associated properties all deal in logical points, they do not reflect the actual
device resolution at which the app is being displayed. To fetch the device screen's resolution in
pixels use the iphoneDeviceResolution() function. This will return a string in the form width,
height – with the values being given in pixels.

To use the full resolution of such high-resolution devices, use the command:

iphoneUseDeviceResolution (true | false)

If passed true, rev will ensure that co-ordinates and sizes specified in rev are treated as being in
pixels, rather than logical points. In particular, when changed, a resizeStack message will be sent
notifying in the size change of the current main-stack, and functions and properties (such as the
screenRect) will reflect co-ordinates in pixels.

Note: The notion of pixel and logical point remains valid on older devices, its just that it is always
1-1 thus using this command will have no effect there.

The scale of the devices screen (relative to a non-Retina display) can be queried using
iphoneDeviceScale(). This function will return 2 if the display is a Retina display, or 1 otherwise.

23

Revision 30 – 2011-03-25 – Mark Waddingham

Location handling

Basic support is present for CoreLocation – the framework that allows tracking of the device's
position.

To start tracking the location of the device use:

iphoneStartTrackingLocation

To stop tracking the location of the device use:

iphoneStopTrackingLocation

You can detect changes in location by handling the locationChanged message. This message is sent
to the current card of the default stack. If location tracking cannot be started (typically due to the
user 'not allowing' access to CoreLocation) then a locationError message is sent instead.

The current location of the device can be fetched by using the iphoneCurrentLocation() function.
If location tracking has not been enabled this function returns empty. Otherwise it returns an array
with the following keys:

• horizontal accuracy – the maximum error in meters of the position indicated by longitude
and latitude

• latitude – the latitude of the current location, measured in degrees relative to the equator.
Positive values indicate positions in the Northern Hemisphere, negative values in the
Southern.

• longitude – the longitude of the current location, measured in degrees relative to the zero
meridian. Positive values extend east of the meridian, negative values extend west.

• vertical accuracy – the maximum error in meters of the altitude value.

• altitude – the distance in meters of the height of the device relative to sea-level. Positive
values extend upward of sea-level, negative values downward.

• timestamp – the time at which the measurement was taken, in seconds since 1970.

If the latitude and longitude could not be measured, those keys together with the horizontal
accuracy key will not be present. If the altitude could not be measured, that key together with the
vertical accuracy will not be present.

Email composition

Basic support

A version of revMail has been implemented that hooks into the iPhone's MessageUI framework.
Using this, you can compose a message and request that the user send it using their currently
configured mail preferences.

The syntax of revMail is:

revMail toAddress, [ccAddress, [subject, [messageBody]]]

Where the address fields are comma separated lists of email address. If any of the parameters are
not present, the empty string is used instead.

Upon return, the result will be set to one of:

24

Revision 30 – 2011-03-25 – Mark Waddingham

• not configured – if the user has turned off or has not setup mail access on their device

• cancel – if the user chooses to cancel the send

• saved – if the user chose to save the message in drafts

• sent – if the user elected to send the email

• failed – if sending the email was attempted, but it failed

Note that once you've called the revMail command you have no more control over what the user
does with the message – they are free to modify it and the addresses as they see fit.

Advanced support

More complete access to iOS's mail composition interface is gained by using one of the following
commands:

iphoneComposeMail subject, [recipients, [ccs, [bccs, [body, [attachments]]]]]

iphoneComposeUnicodeMail subject, [recipients, [ccs, [bccs, [body, [attachments]]]]]

iphoneComposeHtmlMail subject, [recipients, [ccs, [bccs, [body, [attachments]]]]]

All commands work the same, except different variants expect varying encodings for the subject
and body parameters:

• subject – the subject line of the email. If the Unicode form of the command is used, this
should be UTF-16 encoded text.

• recipients – a comma -delimited list of email addresses to place in the email's 'To' field.

• ccs – a comma-delimited list of email addresses to place in the email's 'CC' field.

• bccs – a comma-delimited list of email addresses to place in the email's 'BCC' field.

• body – the body text of the email. If the Unicode variant is used this should be UTF-16
encoded text; if the HTML variant is used then this should be HTML.

• attachments – either empty to send no attachments, a single attachment array or a one-based
numeric array of attachment arrays to include.

The attachments parameter consists of either a single array, or an array of arrays listing the
attachments to include. A single attachment array should consist of the following keys:

• data – the binary data to attach to the email (not needed if file present)

• file – the filename of the file on disk to attach to the email (not needed if data present)

• type – the MIME-type of the data.

• name – the default name to use for the filename displayed in the email

If you specify a file for the attachment, the engine's does its best to ensure the least amount of
memory is used by asking the OS to only load it from disk when needed. Therefore, this should be
the preferred method when attaching large amounts of data.

For example, sending a single attachment might be done like this:

put "Hello World!" into tAttachment["data"]

25

Revision 30 – 2011-03-25 – Mark Waddingham

put "text/plain" into tAttachment["type"]

put "Greetings.txt" into tAttachment["name"]

iphoneComposeMail tSubject, tTo, tCCs, tBCCs, tBody, tAttachment

If multiple attachments are needed, simply build an array of attachment arrays:

put "Hello World!" into tAttachments[1]["data"]

put "text/plain" into tAttachments[1]["type"]

put "Greetings.txt" into tAttachments[1]["name"]

put "Goodbye World!" into tAttachments[2]["data"]

put "text/plain" into tAttachments[2]["type"]

put "Farewell.txt" into tAttachments[2]["name"]

iphoneComposeMail tSubject, tTo, tCCs, tBCCs, tBody, tAttachments

Note: There are hard limits imposed by the OS of the size of attachments that can be made. This
isn't precisely specified anywhere but appears to be around 16Mb based on forum threads.

Upon completion of a compose request, the result will be set to one of the following:

• sent – the email was sent successfully

• failed – the email failed to send

• saved – the email was not sent, but the user elected to save it for later

• cancel – the email was not sent, and the user elected not to save it for later

• not configured – the device is not configured to send email

Some devices will not be configured with email sending capability. To determine if the current
device is, use the iphoneCanSendMail() function. This returns true if the mail client is configured.

File and folder handling

In general handling files and folders in the iPhone engine is the same as that on the desktop. All the
usual syntax associated with such operations will work. Including:

• open file/read/write/seek/close file

• delete file

• create folder/delete folder

• setting and getting the folder

• listing files and folders using the [detailed] files and the [detailed] folders

• storing and fetching binfile: and file: urls

However, it is important to be aware that the iPhoneOS imposes strict controls over what you can
and cannot access. Each application in iPhoneOS is stored in its own 'sandbox' folder (referred to as
the home folder. An application is free to read and write files within this folder and its descendants,
but is not allowed to access anything outside of this.

26

Revision 30 – 2011-03-25 – Mark Waddingham

When an application is installed on a phone (or in the simulator) a number of initial folders are
created for use by the application. You can locate the paths to these folders using the
specialFolderPath() function with the following selectors:

• home – the (unique) folder containing the application bundle and its associated data and
folders

• documents – the folder in which the application should store any document data (this folder
is backed up by iTunes on sync)

• cache – the folder in which the application should store any transient data that needs to be
preserved between launches (this folder is not backed up by iTunes on sync)

• temporary – the folder in which the application should store any temporary data that is not
needed between launches (this folder is not backed up by iTunes on sync)

• engine – the folder containing the built standalone engine (i.e. the bundle). This is useful for
constructing paths to resources that have been copied into the bundle at build time.

In general you should only create files within the documents, cache, and temporary folders. Indeed,
be careful not to change or add any files within the application bundle. The application bundle is
digitally signed when it is built, and any changes to it after this point will invalidate the signature
and prevent it from launching.

Note: Unlike (most) Mac OS X installs, the iPhoneOS filesystem is case-sensitive so take care to
ensure that you consistently use the same casing for filenames when constructing them. Also note
that the Simulator has the same case-sensitivity as the host system and not the device.

System alert support

Support has been added for the beepSound and beep commands. These hook into iPhoneOS's
standard PlayPlayerSound support.

To specify a sound to be played as the system sound, use the beepSound global property. This
should be set to the filename of the sound to use when beep is executed. If you want no sound to
play when using beep, simply set the beepSound to empty.

To perform a system alert, use the beep command. If no sound has been specified via the
beepSound global property, the engine will request a vibration alert.

Note: The iPhone has no default system alert sound so if a sound is required one must be specified
by using the beepSound. The action of beep is controlled by the system and depends on the user's
preference settings. In particular, a beep will only cause a vibration if the user has enabled that
feature. Similarly, a beep will only cause a sound if the phone is not in silent mode.

Basic sound playback support

Basic support for playing sounds has been added using a variant of the play command. A single
sound can be played at once by using:

play soundFile [looping]

Executing such a command will first stop any currently playing sound, and then attempt to load the
given sound file. If looping is specified the sound will repeat forever, or until another sound is
played.

27

Revision 30 – 2011-03-25 – Mark Waddingham

If the sound playback could not be started, the command will return "could not play sound" in the
result.

To stop a sound that is currently playing, simply use:

play empty

The volume at which a sound is played can be controlled via the playLoudness global property.

The overall volume of sound playback depends on the current volume setting the user has on their
device.

This feature uses the built-in sound playback facilities on the iPhone (AVAudioPlayer, to be
specific) and as such has support for a variety of formats including AIFF and MP3's.

You can monitor the current sound being played by using the sound global property. This will
either return the filename of the sound currently being played, or "done" if there is no sound
currently playing.

Multi-channel sound support

In addition to basic sound playback support, there is also support for playing sounds on different
channels. This feature uses the iOS AVAudioPlayer object, which allows many concurrent sounds to
be played simultaneously.

Example: You can find a simple stack using the multi-channel soundl features in the IDE resources
folder (open using the Help > Example Stacks and Resources menu item). The stack can be found
at: Mobile Examples/Sound Example.livecode

Playing Sounds

To play a sound on a given channel use the following command:

iphonePlaySoundOnChannel sound, channel, type

Where sound is the sound file you wish to play, channel is the name of the channel to play it on and
type is one of:

• now – play the sound immediately, replacing any current sound (and queued sound) on the
channel.

• next – queue the sound to play immediately after the current sound, replacing any previously
queued sound. If no sound is playing the sound is prepared to play now, but the channel is
immediately paused – this case allows a sound to be prepared in advance of it being needed.

• looping – play the sound immediately, replacing any current sound (and queued sound) on
the channel, and make it loop indefinitely.

If a sound channel with the given name doesn't exist, a new one is created. When queuing a sound
using next, the engine will 'pre-prepare' the sound long before the current sound is played, this
ensures minimal latency between the current sound ending and the next one beginning.

If an empty string is passed as the sound parameter, the current and scheduled sound on the given
channel will be stopped and cleared.

When a sound has finished playing naturally (not stopped/replaced) on a given channel, a
soundFinishedOnChannel message is sent to the object which played the sound:

28

Revision 30 – 2011-03-25 – Mark Waddingham

soundFinishedOnChannel channel, sound

The message is sent after the switch has occurred between a current and next sound on the given
channel. This makes it is an ideal opportunity to schedule the next sound on the channel, thus
allowing continuous and seamless playback of sounds.

To stop the currently playing sound, and to clear any scheduled sound, on a given channel use:

iphoneStopPlayingOnChannel channel

To pause the currently playing sound on a given channel use:

iphonePausePlayingOnChannel channel

To resume the current sound's playback on a given channel use:

iphoneResumePlayingOnChannel channel

Channel Properties

To control the volume of a given sound channel use the following:

iphoneSetSoundChannelVolume channel, volume

iphoneSoundChannelVolume(channel)

Here channel is the channel to affect, and volume is an integer between 0 and 100 where 0 is no
volume, 100 is full volume.

Changing the volume affects the currently playing sound and any sounds played subsequently on
that channel.

Note that you can set the volume of a non-existant channel and this will result in it being created.
This allows you to set the volume before any sounds are played. If you attempt to get the volume of
a non-existent channel, however, empty will be retuned.

To find out what sounds (if any) are currently playing and are scheduled for playing next on a given
channel use:

iphoneSoundOnChannel(channel)

iphoneNextSoundOnChannel(channel)

These will return empty if no sound is currently (scheduled for) playing (or the channel doesn't
exist).

To query a channel's current status use iphoneSoundChannelStatus(). This returns one of the
following:

• stopped – there is no sound currently playing, nor any sound scheduled to be playing

• paused – there are sounds scheduled to be played, but the channel is currently paused

• playing – a sound is currently playing on the channel

Managing Channels

To get a list of the sound channels that currently exist use:

iphoneSoundChannels()

29

Revision 30 – 2011-03-25 – Mark Waddingham

This returns a return-delimited list of the channel names.

Sound channels persist after any sounds have finished playing on them, retaining the last set volume
setting. To remove a channel from memory completely use:

iphoneDeleteSoundChannel channel

Sound channels only consume system resources when they are playing sounds, thus you don't need
to be concerned about having many around at once (assuming most are inactive!).

Video playback support

Basic support for playing videos has been added using a variant of the play command. A video file
can be played by using:

play (video-file | video-url)

The video will be played fullscreen, and the command will not return until it is complete, or the
user dismisses it.

If a path is specified it will be interpreted as a local file. If a url is specified, then it must be either
an 'http', or 'https' url. In this case, the content will be streamed.

The playback uses iOS's built-in video playback support (MPMoviePlayer) and as such can use any
video files supported by that, including mp4's.

On iPhoneOS 3.1.3, the video will always play with landscape orientation (there is no 'legal' way to
change this). On iOS 3.2 and later, however, the orientation of the video will be tied to the current
interface orientation.

Appearance of the controller is tied to the showController of the templatePlayer. Changing this
property to true or false, will cause the controller to either be shown, or hidden.

When a movie is played without controller, any touch on the screen will result in a movieTouched
message being sent to the object's whose script started the video. The principal purpose of this
message is allow the play stop command to be used to stop the movie. e.g.

on movieTouched

play stop

end movieTouched

Note: The movieTouched message is not sent if the video is played with showController set to true.

Playing a video can be made to loop by setting the looping of the templatePlayer to true before
executing the play video command. Note that looping video is only supported on iOS 3.2 and
higher.

A section of a video can be played by setting the playSelection of the templatePlayer to true
before executing the play video command. This will then use the startTime and the endTime
properties of the templatePlayer to determine what section to play. The values of these properties
will be interpreted as the number of milliseconds from the beginning of the video.

URL launching support

Support for launching URLs has been added. The launch url command can now be used to request
the opening of a given url:

30

Revision 30 – 2011-03-25 – Mark Waddingham

launch url urlToOpen

When such a command is executed, the engine first checks to see if an application is available to
handle the URL. If no such application exists, the command returns "no association" in the result.
If an application is available, the engine requests that it launches with the given url.

Using this syntax it is possible to do things such as:

• open Safari with a given http: url

• open the dialer with a given phone number using a tel: url

Important: Successfully launching a url will cause another application to open and the requesting
application to be quit. The application will receive a shutdown message before this happens,
however.

Font querying support

The list of available fonts can now be queried by using the fontNames function. This returns a
return-delimited list of all the available font families.

The list of available styles can be queried by using the fontStyles function:

fontStyles(fontFamily, 0)

This will return the list of all font names in the given family. It is these names which should be used
as the value of the textFont property.

Note: Strictly speaking the list returned by fontStyles isn't the font styles, but the font names and
the list returned by fontNames isn't the font names but the font families.

Visual effect support

The iOS engine now has support for a range of visual effects – including some specific to iOS. The
following effects are available:

• scroll (up | left | down | right)

• reveal (up | left | down | right)

• push (up | left | down | right)

• dissolve

• curl (up | down)

• flip (left | right)

Speed can be controlled via the usual adjectives very slow, slow, normal, fast or very fast.

For the flip visual effect, the background behind the flip will be taken from the background color of
the current stack – i.e. the card is cut out and flipped over the stack.

Status bar configuration support

You can now configure the status bar that appears at the top of the iOS screen.

To control the visibility of the status bar use the following commands:

31

Revision 30 – 2011-03-25 – Mark Waddingham

iphoneShowStatusBar

iphoneHideStatusBar

To control the style of the status bar use the following command:

iphoneSetStatusBarStyle style

Where style is one of:

• default – the default mode for the device

• translucent – a semi-transparent status bar (in this case the stack will appear underneath it)

• opaque – a black status bar (in this case the stack will appear below it).

On iPad devices, anything other that default has no effect.

Locale and system language query support

You can query the list of preferred languages using the iphonePreferredLanguages() function.
This returns a return-delimited list of standard language tags in order of user preference (for
example "en", "fr", "de", etc.)

You can query the currently configured locale using the iphoneCurrentLocale() function. This
returns a standard locale tag (for example "en_GB", "en_US", "fr_FR", etc.)

Hardware and system version query support

You can fetch information about the current hardware and system version using the standard
LiveCode syntax in the following ways.

To determine what processor an application is running on use the processor. In the simulator this
will return i386 and on a real device this will return ARM.

To determine the type of device an application is running on use the machine. This will return one
of:

• iPod Touch – the device is one of the iPod Touch models

• iPhone – the device is one of the iPhone models

• iPhone Simulator – the device is a simulated iPhone

• iPad – the device is the iPad

• iPad Simulator – the device is a simulator iPad

To determine the version of iPhoneOS the application is running on, use the systemVersion. For
example, if the device has iPhoneOS 3.2 installed, this property will return 3.2; if the device has
iPhoneOS 3.1.3 installed, this property will return 3.1.3.

You can fetch the current device's unique system identifier with the iphoneSystemIdentifier()
function. This returns a string in the standard UUID/GUID format.

Modal Pick-Wheel support

You can present the user with a list of choices to pick from using standard iOS interface elements

32

Revision 30 – 2011-03-25 – Mark Waddingham

using:

iphonePick optionList, initialIndex

Where optionList is a return-delimited list to choose from, and initialIndex is the (1-based) index of
the item to be initially highlighted. The item the user chooses is returned in the result. If the user
does not choose an item, 0 is returned.

On the iPhone, a standard Action Sheet pops up containing the standard pick-wheel user interface
element.

On the iPad, a standard pop-over is presented with a list to choose from. The currently selected
entry being marked with a check. In this case, if initialIndex is 0, then no item is checked when
displayed.

Idle Timer configuration

By default, iOS will dim the screen and eventually lock the device after periods of no user-
interaction.

To control this behavior, use the following commands:

iphoneLockIdleTimer

iphoneUnlockIdleTimer

Locking the idle timer increments an internal lock count, while unlocking the idle timer decrements
the lock count. When the lock count goes from 0 to 1, the idleTimer is turned off; when the lock
count goes from 1 to 0, the idleTimer is turned on.

To determine whether the idleTimer is currently locked (i.e. turned off) use
iphoneIdleTimerLocked().

This feature wraps the UIApplication class's setIdleTimerDisabled method.

Querying camera capabilities

To find out the capabilities of the current devices camera(s), use the following function:

iphoneCameraFeatures([camera])

The camera parameter is a string containing either "rear" or "front". In this case, the capabilities of
that camera are returned. These take the form of a comma-delimited list of one or more of the
following:

• photo – the camera is capable of taking photos

• video – the camera is capable of recording videos

• flash – the camera has a flash that can be turned on or off

If the returned string is empty it means the device does not have that type of camera.

If no camera parameter is specified (or is empty), then a comma-delimited list of one or more of the
following is returned:

• front photo – the front camera can take photos

• front video – the front camera can record video

33

Revision 30 – 2011-03-25 – Mark Waddingham

• front flash – the front camera has a flash

• rear photo – the rear camera can take photos

• rear video – the rear camera can record video

• rear flash – the rear camera has a flash

If the returned string is empty it means the device has no cameras.

Clearing pending interactions

As interaction events (touch and mouse messages) are queued, it is possible for such messages to
accumulate when they aren't needed. In particular, when executing 'waits', 'moves' or during card
transitions.

To handle this case, the iphoneClearTouches command has been added. At the point of calling, this
will collect all pending touch interactions and remove them from the event queue.

Note that this also cancels any existing mouse or touch sequences, meaning that you (nor the
engine) will not receive a mouseUp, mouseRelease, touchEnd or touchCancel message for any
current interactions.

A good example of when this command might be useful is when playing an instructional sound:

on tellUserInstructions

play specialFolderPath("engine") & slash & "Instruction_1.mp3"

wait until the sound is "done"

iphoneClearTouches

end tellUserInstructions

Here, if the iphoneClearTouches call was not made, any tough events the user created while the
sound was playing would be queued and then be delivered immediately afterwards potentially
causing unwanted effects.

Network reachability checking (experimental)

The network connection on iOS devices is generally more transient than normal network
connections and can change between wireless and wide-area wireless (GPRS, 3G, EDGE etc.)
transport as it moves, and indeed be lost entirely.

As the behavior of an application may vary depending on what kind of network connection is
present it is useful to be able to monitor a given server for the type of connection the device
currently has to it.

To start monitoring a specific server for reachability via the network use:

iphoneSetReachabilityTarget hostNameOrAddress

Where hostNameOrAddress is the server to start monitoring, or empty to stop monitoring.

The server currently being monitored can be determined by using the iphoneReachabilityTarget()
function. This returns empty if no server is currently being monitored.

While a server is being monitored, any changes to network connectivity that affect access to it will

34

Revision 30 – 2011-03-25 – Mark Waddingham

cause a reachabilityChanged message to be delivered to this card of the defaultStack:

reachabilityChanged hostNameOrAddress, reachabilityInfo

Here hostNameOrAddress will be the server that is being monitored (the same string as passed to
iphoneSetReachabilityTarget), and reachabilityInfo will be a comma-delimited list of zero or
more of the following items:

• transient – the specified server can be reached via a transient connection

• reachable – the specified server can be reached via the current network configuration.

• connection required – the specified server can be reached via the current network
configuration, but a connection needs to be established before it can.

• connection on traffic – the specified server can be reached via the current network
configuration, but a connection needs to be established before it can. Any traffic directed to
the server will initiate the connection.

• intervention required – the specified server can be reached via the current network
configuration, but some form of user intervention will be required to establish this
connection.

• is local – the specified server is associated with a network interface on the current system.

• is direct – network traffic to the given server will not go through a gateway, but is routed
directly to one of the interfaces in the system.

• is cell – the specified server can be reached via an EDGE, GPRS or other 'cell' connection.

If no items are specified then it means the given server is not currently reachable.

The current reachability facilities are a direct wrapper around the SCNetworkReachability functions
of the OS, thus the reachabilityInfo flags are a direct mapping of what that provides.

Our testing indicates the following are reasonable guidelines for checking for various states:

• To determine if there is no network connection at all (e.g. flight-mode or no cell nor wireless
signal) use:

reachabilityInfo is empty

• To determine if a network connection should succeed use:

"reachable" is among the items of reachabilityInfo

• To determine if a network connection should succeed but would use a cell network use:

"is cell" is among the items of reachabilityInfo

• To determine if a network connection should succeed and would use a wireless network use:

"reachable" is among the items of reachabilityInfo and \

"is cell" is not among the items of reachabilityInfo

Feedback: Please let us know if you find any other useful combinations of flags, or indeed find
cases where the above guidelines do not work. This feature is currently is lower-level than we
would like, and will improve/replace it when we have better set of common empirical use-cases and
scenarios to work from.

35

Revision 30 – 2011-03-25 – Mark Waddingham

Important: This feature is currently experimental. This means that it may not be complete, or
may fail in some circumstances that you would expect it to work. Please do not be afraid to try
it out as we need feedback to develop it further.

iOS Native Controls

Low-level support has been added for creating and manipulating some native iOS controls (views).
There are generic set of commands and functions for creating and configuring certain UIView sub-
classes which then layer above the currently displayed stack.

At present, there is an implementation for the UIWebView control (browser) and for the
UIScrollView control (scroller).

To create a native control use:

iphoneControlCreate controlType, [name]

Where controlType is the type of control you wish to create – either "browser" or "scroller" and
name is an optional string to use to identify the control in the other functions. The name must be
unique amongst all existing controls and cannot be an integer. The unique (numeric) id for the new
control is returned in the result.

To destroy a native control use:

iphoneControlDelete idOrName

Where idOrName is the numeric id returned by iphoneControlCreate, or the name of the control if
provided.

A list of all native controls currently in existence can be fetched using the iphoneControls()
function. This returns a return-delimited list of control names or ids. Where a control has a name
that is used, otherwise its id is used.

Once such a control has been created, you can configure it using:

iphoneControlSet idOrName, property, value

Where

• idOrName is the numeric id returned by iphoneControlCreate, or the name of the control if
provided.

• property is the name of the property to change

• value is the value of the property to change to

Properties can also be read by using iphoneControlGet(id, property).

Control specific behavior can be invoked by using:

iphoneControlDo idOrName, action, ...

Where action is what is to be done, and the parameters are action/control specific.

While in the context of a message that has been dispatched from a native control, you can use the
iphoneControlTarget() function to fetch the name (or id, if no name is set) of the control that sent
the message.

In general, any messages dispatched by the native control will be sent to the object containing the
script which created it, this also works correctly with behaviors – messages being sent to the object

36

Revision 30 – 2011-03-25 – Mark Waddingham

referring to the behavior, and not the behavior's object.

All controls (UIView)

All native controls are descendants of the UIView class and therefore inherit a common set of
properties and actions.

Properties

id read-only The unique (integer) id of the control.

name read-only The unique name of the control if one was provided at creation time,
empty otherwise.

rect read/write The bounds of the control, relative to the top-left of the card.

visible read/write Set to true or false to determine whether the control should be
displayed.

opaque read/write Set to false if the control should be rendered with transparency. In
particular, set this control to true if you set a backgroundColor that is
not fully opaque.

alpha read/write Set to a value between 0 and 255 to blend the control with any
controls underneath it.

backgroundColor read/write Set to either a standard color name, or a string of the form
red,green,blue or red,green,blue,alpha. Where the components are
integers in the range 0 to 255.

Browser control – UIWebView

A UIWebView control is created using a control type of "browser". For full details of what the
UIWebView control is capable of, and background about it see the iOS reference document.

Example: You can find a simple stack using the native browser control features in the IDE
resources folder (open using the Help > Example Stacks and Resources menu item). The stack can
be found at: Mobile Examples/Browser Example.livecode

Properties

url read/write The url to be loaded into the web-view.

autoFit read/write Set to true or false to determine whether the page will be scaled to fit
the rect of the control (wraps the scalesPageToFit property of
UIWebView).

canAdvance read-only Returns true if there is a next page in the history (wraps the
canGoForward property of UIWebView).

canRetreat read-only Returns true if there is a previous page in the history (wraps the
canGoBack property of UIWebView).

delayRequests read/write Set to true to cause the loadRequest message to be sent.

37

http://developer.apple.com/library/ios/#documentation/uikit/reference/UIWebView_Class/Reference/Reference.html

Revision 30 – 2011-03-25 – Mark Waddingham

Note that in this mode, web-pages that trigger sub-document loads
(such as those containing iframes) will not load correctly.

dataDetectorTypes read/write Use this property to specify the types of data that should be
automatically converted to clickable URLs in the web-view.

It is specified as a comma-delimited list of one or more of the
following values:

• phone number

• calendar event (iOS4.0+)

• link

• address (iOS4.0+)

(this property wraps the dataDetectorTypes property of UIWebView).

allowsInlinePlayba
ck

read/write Set to true if the web-view should allow media files to be played
'inline' in the page (wraps the allowsInlineMediaPlayback property
of the UIWebView).

Note that this property is only available on iOS4.0 and later

mediaPlaybackReq
uiresUserAction

read/write Set to false to allow media files to play automatically in the web-
view (wraps the mediaPlaybackRequiresUserAction property of the
UIWebView).

Note that this property is only available on iOS4.0 and later.

Actions

iphoneControlDo id, "advance"

Move forward through the history (wraps the goForward method of UIWebView).

iphoneControlDo id, "retreat"

Move backward through the history (wraps the goBack method of UIWebView).

iphoneControlDo id, "reload"

Reload the current page (wraps the reload method of UIWebView).

iphoneControlDo id, "stop"

Stop loading the current page (wraps the stopLoading method of UIWebView).

iphoneControlDo id, "load", baseUrl, htmlText

Loads as page consisting of the given htmlText with the given baseUrl (wraps the
loadHtmlString method of UIWebView).

iphoneControlDo id, "execute", script

Evaluates the given JavaScript script in the context of the current page (wraps the
stringByEvaluationJavaScriptFromString method of UIWebView).

38

Revision 30 – 2011-03-25 – Mark Waddingham

Messages

browserStartedLoading url

Sent when the given url has started to load (sent in response to the webViewDidFinishLoad
delegate method).

browserFinishedLoading url

Sent when the given url has finished loading (sent in response to the webViewDidStartLoad
delegate method).

browserLoadRequest url, type

Sent when the given url has been requested. The reason for the request is specified in type
which can be one of click, submit, navigate, reload, resubmit or other.

Not passing the message will cause the load request to not go ahead.

This message is only sent if delayRequests has been set to true. Note that delaying requests
can cause web-pages that load pages into sub-documents to not work correctly.

(This message is sent in response to the webView:shouldStartLoadWithRequest: delegate
method).

browserLoadFailed url, error

Sent when the given url fails to load (sent in response to the
webView:didFailLoadWithError: delegate method).

Scroller control – UIScrollView

A UIScrollView control is created using a control type of "scroller". For full details of what the
UIScrollView control is capable of, and background about it see the iOS reference document.

Rather than act as a container for other controls, the 'scroller' is intended to be used as an overlay on
part of the screen you wish to interact with the proper iOS scrollbars. By responding to the various
scroller messages, you can move LiveCode controls or set the appropriate scroll properties of group
and fields to get a native scrolling effect.

Example: You can find a simple stack using the native scroller control features in the IDE resources
folder (open using the Help > Example Stacks and Resources menu item). The stack can be found
at: Mobile Examples/Scroller Example.livecode

Properties

contentRect read/write The rectangle over which the scroller scrolls. This is distinct from the
scroller's rect, and is essentially the minimum/maximum values of
the scroll properties (adjusted for the size of the scroller).

This is a comma-separated list of four integers, describing a
rectangle.

hScroll read/write The horizontal scroll offset.

This is an integer value ranging between the left and right of the
contentRect, adjusting appropriately for the size of the scroller (i.e.

39

http://developer.apple.com/library/ios/#documentation/uikit/reference/UIScrollView_Class/Reference/UIScrollView.html

Revision 30 – 2011-03-25 – Mark Waddingham

contentRect.left to contectRect.right – rect.width).

vScroll read/write The vertical scroll offset.

This is an integer value ranging between the top and bottom of the
contentRect, adjusting appropriately for the size of the scroller (i.e.
contentRect.top to contectRect.bottom – rect.height).

canBounce read/write Determines whether the scroller will 'bounce' when it hits the edge of
the contentRect (maps to the UIScrollView bounces property).

This is a boolean value.

canScrollToTop read/write Determines whether a touch on the status bar causes the scroll to
scroll to the top (maps to the UIScrollView scrollsToTop property).

This is a boolean value.

canCancelTouches read/write Determines whether the scroller is allowed to cancel an touch that
has been passed through to the underlying controls when it thinks its
a scroll gesture (maps to the UIScrollView
canCancelContentTouches property).

This is a boolean value.

delayTouches read/write Determines whether the scroller delays passing on touch-down
events until it has determined whether it is the start of a scroll gesture
or not (maps to the UIScrollView delaysContentTouches property).

This is a boolean value.

pagingEnabled read/write Determines whether scrolling stops on multiples of the scroller's
bounds (maps to the UIScrollView pagingEnabled property).

This is a boolean value.

decelerationRate read/write Determines the rate at which scrolling decelerates when a finger is
lifted (maps to the UIScrollView decelerationRate property).

This can be either normal, fast or a real number.

indicatorStyle read/write Determines the style of indicators to display (maps to the
UIScrollView indicatorStyle property).

This can be one of default, white or black.

indicatorInsets read/write Determines how far from the edge of the scrollers bounds, the
indicators are inset (maps to the UIScrollView scrollIndicatorInsets
property).

This is a comma-separated list of four integers, describing the left,
top, right and bottom inset distances.

scrollingEnabled read/write Determines whether touches on the scroller cause scrolling (maps to
the UIScrollView scrollEnabled property).

This is a boolean value.

hIndicator read/write Determines whether the horizontal indicator should be displayed
when scrolling (maps to the UIScrollView

40

Revision 30 – 2011-03-25 – Mark Waddingham

showsHorizontalScrollIndicator property).

This is a boolean value.

vIndicator read/write Determines whether the vertical indicator should be displayed when
scrolling (maps to the UIScrollView showsVerticalScrollIndicator
property).

This is a boolean value.

lockDirection read/write Determines whether scrolling is locked to the initial direction a drag
occurs in (maps to the UIScrollView directionalLockEnabled
property).

This is a boolean value.

tracking read-only Returns true if the scroller is monitoring a touch for the start of a
scroll action (maps to the UIScrollView tracking property).

This is a boolean value.

dragging read-only Returns true if the scroller is currently performing a scroll action
(maps to the UIScrollView dragging property).

This is a boolean value.

decelerating read-only Returns true if the scroll is currently decelerating after a scroll action
(maps to the UIScrollView decelerating property).

This is a boolean value.

Actions

iphoneControlDo id, "flashScrollIndicators"

Makes the scroll indicators flash momentarily.

Messages

scrollerBeginDecelerate

This message is sent when scrolling is about to start decelerating.

scrollerEndDecelerate

This message is sent when scrolling has finished decelerating.

scrollerScrollToTop

This message is sent when the scroller is scrolled to top by touching the status bar.

scrollerBeginDrag

This message is sent when a scroll initiating drag is started.

scrollerEndDrag didDecelerate

This message is sent when a scroll initiating drag is finished.

scrollerDidScroll hScroll, vScroll

This message is sent when the scroll properties of the scroller have changed.

41

Revision 30 – 2011-03-25 – Mark Waddingham

Player control – MPMoviePlayerController

An MPMoviePlayerController control is created using a control type of "player". For full details of
what the MPMoviePlayerController control is capable of, and background about it see the iOS
Reference Document.

On iOS versions < 4.2 you can only have a single MPMoviePlayerController instance in existance
at once. Therefore, on these iOS versions you can only create a single native player control at any
one time, and while one is present you cannot use the play video command to play fullscreen
videos.

On iOS version >= 4.2, while you can have multiple MPMoviePlayerController instances (and thus
multiple native player controls) simultaneously, only a single one can be playing at any one time.

Note: The player control is only available on iOS 4.0 and later.

Properties

filename read/write The filename of URL of the media to play.

Setting the filename of the player automatically 'prepares' the movie
for playback.

fullscreen read/write Determines whether the player's content is played fullscreen.

This is a boolean value.

preserveAspect read/write Determines whether the player's content should preserve its aspect
ratio when scaled to fit within the control's bounds.

This is a boolean value.

showController read/write Determines whether the controller will be displayed over the content.

This is a boolean value.

useApplicationAu
dioSession

read/write Determines whether the movie uses a system-supplied audio session
or not (maps to the native useApplicationAudioSession property).

This is a boolean value.

shouldAutoplay read/write Determines whether the playback of network-based content begins
automatically when there is enough buffered data to ensure
uninterrupted playback (maps to the native shouldAutoplay
property).

This is a boolean value.

looping read/write Determines whether the playback of the movie should loop
indefinitely.

This is a boolean value.

allowsAirPlay read/write Determines whether a control should be presented to allow the user
to choose AirPlay-enabled hardward for playback (maps to the native
allowsAirPlay property).

This is a boolean value.

42

http://developer.apple.com/library/ios/#documentation/mediaplayer/reference/MPMoviePlayerController_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/mediaplayer/reference/MPMoviePlayerController_Class/Reference/Reference.html

Revision 30 – 2011-03-25 – Mark Waddingham

Note: This property is only supported on iOS 4.3 and later.

duration read-only The duration of the movie, measured in milliseconds (maps to the
native duration property).

If the duration of the movie is not yet known, 0 is returned. If the
duration is subsequently determined, an appropriate
playerPropertyAvailable message is sent and the property updated.

This is an integer value.

playableDuration read-only The amount of currently playable content, measured in milliseconds
(maps to the native playableDuration property).

This is an integer value.

currentTime read/write The current position of the playhead, measured in milliseconds
(maps to the native currentPlaybackTime property).

This is an integer value.

startTime read/write The position at which playback should start, measured in
milliseconds (maps to the native initialPlaybackTime property).

This is an integer value.

endTime read/write The position at which playback should end, measured in milliseconds
(maps to the native endPlaybackTime property).

This is an integer value.

playRate read/write The current playback rate for the player (maps to the native
currentPlaybackRate property).

This represents a multiplier for the default playback rate of the
current content. A value of 0.0 indicates playback is stopped, while a
value of 1.0 indicates normal speed. Positive values indicate forward
playback, while negative values indicate reverse playback.

This is real value.

loadState read-only The network load state of the player (maps to the native loadState
property).

This is a comma-delimited list of zero or more of the following:

• playable – enough data is available to start playing, but it
may run out before playback finishes

• playthrough – enough data has been buffered for playback to
continue uninterrupted

• stalled – buffer of data has stalled and playback may pause
automatically if the player runs out of data.

This is a string value.

playbackState read-only The current playback state of the player (maps to the native
playbackState property).

43

Revision 30 – 2011-03-25 – Mark Waddingham

This is one of the following values:

• stopped – playback is stopped and will commence from the
beginning when started.

• playing – playback is current underway

• paused – playback is paused and will resume from the point it
was paused

• interrupted – playback is temporarily interrupted, perhaps
because the buffer ran out of content

• seeking forward – the player is currently seeking towards the
end of the movie

• seeking backward – the player is currently seeking towards
the beginning of the movie

naturalSize read-only The raw size of a video frame in pixels (maps to the native
naturalSize property).

This is a comma-separated list of two integers, the first is the width,
the second is the height.

Actions

iphoneControlDo id, "play"

Start playing the content of the player.

iphoneControlDo id, "pause"

Pause the content at the current position.

iphoneControlDo id, "prepareToPlay"

Make the content ready to play, but don't actually commence playback.

iphoneControlDo id, "stop"

Stop playing the content of the player.

iphoneControlDo id, "begin seeking forward"

Start seeking forward through the content of the player.

iphoneControlDo id, "begin seeking backward"

Start seeking backward through the content of the player.

iphoneControlDo id, "end seeking"

Stop seeking through the content of the player.

iphoneControlDo id, "snapshot" | "snapshot exactly", time, [maxWidth, maxHeight]

Take a snapshot of the movie at time milliseconds from the beginning. If the exactly form is
specified the frame produced will be as close as possible to time, otherwise the nearest key-
frame will be used.

If maxWidth and maxHeight are specified, the snapshot will be scaled to fit within a rectangle

44

Revision 30 – 2011-03-25 – Mark Waddingham

of that size but preserving the frame's aspect ratio.

The snapshot is made available as a new image object cloned from the templateImage, with
data in the format as specified by the global paintCompression property.

Messages

playerPropertyAvailable propertyName

Enough data has become available to make the given propertyName available. Properties that
might not be available immediately are duration and naturalSize.

playerProgressChanged

The loadState property has changed value.

playerEnterFullscreen

The player has entered full screen mode.

playerLeaveFullscreen

The player has left full screen mode.

playerMovieChanged

The content of the player has changed.

playerFinished

The content has finished playing through.

playerStopped

The content finished playing through due to a user exit.

playerError

The content finished playing due to an error.

Input control – UITextField

A UITextField control is created using a control type of "input". For full details of what the
UITextField control is capable of, and background about it see the iOS reference document.

The input control allows the editing of a single line of text, with the 'return' key ending editing and
allowing the application to perform an appropriate action.

Properties

text read/write The content of the control (maps to the native text property).

This is a string value.

unicodeText read/write The content of control encoded as UTF-16 (maps to the native text
property).

This is a binary value.

textColor read/write The color to use for the text in control (maps to the native textColor

45

http://developer.apple.com/library/ios/#documentation/uikit/reference/UITextField_Class/Reference/UITextField.html

Revision 30 – 2011-03-25 – Mark Waddingham

property).

This is either a standard color name, or a string of the form
red,green,blue or red,green,blue,alpha. Where the components are
integers in the range 0 to 255.

fontName read/write The name of the font to use for text in the control.

This is a string value.

fontSize read/write The size of the font to use for text in the control.

This is an integer value.

textAlign read/write The alignment to use for text in the control (maps to the native
textAlignment property).

This is one of left, center or right.

autoFit read/write Determines whether the size of the text is scaled so that it fits within
the width of the control down to the size specified by the
minimumFontSize property (maps to the native
adjustsFontSizeToFitWidth property).

This is a boolean value.

minimumFontSize read/write The minimum size text should be shrunk to to satisfy autoFit
requirements (maps to the native minimumFontSize property).

This is an integer value,

autoClear read/write Determines whether the control is emptied automatically when
editing begins (maps to the native clearsOnBeginEditing property).

clearButtonMode read/write The display mode of the standard 'clear' button overlay (maps to the
native clearButtonMode property).

This is one of the following:

• never – never display the clear button

• while editing – only display the clear button while editing

• unless editing – only display the clear button when not
editing

• always – always display the clear button

borderStyle read/write The type of border to draw around the control (maps to the native
borderStyle property).

This is one of the following:

• none – do not draw a border

• line – draw a thin line around the control

• bezel – draw a bezel-style border around the control

• rounded – draw a rounded rectangle style border around the
control

46

Revision 30 – 2011-03-25 – Mark Waddingham

editing read-only Indicates whether the control is currently being edited or not (maps
to the native editing property).

This is a boolean value.

autoCapitalization
Type

read/write Determines when the shift-key is automatically enabled (maps to the
native autocapitalizationType property).

This is one of the following:

• none – the shift-key is never automatically enabled

• words – the shift-key is enabled at the start of words

• sentences – the shift-key is enabled at the start of sentences

• all characters – the shift-key is enabled at the start of each
character

autoCorrectionTyp
e

read/write Determines whether auto-correct behavior should be enabled (maps
to the native autocorrectionType property).

This is one of the following:

• default – use the appropraite auto-correct behavior for the
current script system.

• no – disable auto-correct behavior

• yes – enable auto-correct behavior

manageReturnKey read/write Determines whether the return key should be automatically enabled
or disabled based on whether the control has content or not (maps to
the native enablesReturnKeyAutomatically property).

This is a boolean value.

keyboardStyle read/write Determines what kind of appearance the keyboard has (maps to the
native keyboardAppearance property).

This is one of the following:

• default – the standard keyboard appearance

• alert – the keyboard that is suitable for an alert panel
(iPhone/iPod only)

keyboardType read/write Determines what kind of keyboard should be displayed (maps to the
native keyboardType property).

This is one of the following:

• default – the normal keyboard

• alphabet – the alphabetic keyboard

• numeric – the numeric keyboard with punctuation

• url – the url entry keyboard

• number – the number pad keyboard

47

Revision 30 – 2011-03-25 – Mark Waddingham

• phone – the phone number pad keyboard

• contact – the phone contact pad keyboard

• email – the email keyboard

• decimal – the decimal numeric pad keyboard (iOS 4.1+)

returnKeyType read/write Determines what kind of return-key the keyboard should have (maps
to the native returnKeyType property).

This is one of the following:

• default – the normal return key

• go – the 'Go' return key

• google – the 'Google' return key

• join – the 'Join' return key

• next – the 'Next' return key

• route – the 'Route' return key

• search – the 'Seach' return key

• send – the 'Send' return key

• yahoo – the 'Yahoo' return key

• done – the 'Done' return key

• emergency call – the 'emergency call' return key

contentType read/write Determines what kind of content the control contains.

This is one of the following:

• plain – plain, unstyled text

• password – plain text displayed in the standard iOS password
style.

enabled read/write Determines whether the control is enabled or not.

This is a boolean value.

Actions

iphoneControlDo id, "focus"

Focus on the control, displaying the keyboard if necessary.

Messages

inputBeginEditing

The control has become focused and editing has commenced.

inputEndEditing

48

Revision 30 – 2011-03-25 – Mark Waddingham

The control has lost focus and editing has ceased.

inputTextChanged
An editing operation has taken place and the content of the control has changed.

inputReturnKey

The return key has been pressed and focus removed from the input control.

49

Revision 30 – 2011-03-25 – Mark Waddingham

Miscellaneous Information

Encryption Compliance – HTTPS

Any applications using encryption need to declare this fact to Apple when binaries are submitted in
iTunesConnect.

Use of the HTTPS protocol counts as using encryption and as such you must answer 'Yes' to the
relevant question when prompted to do so. This may result in you needing to go through the CCATS
approval process for your application depending on how the encryption is used.

A useful blog post on this matter can be found here: http://blog.theanimail.com/iphone-encryption-
export-compliance-for-apps.

For reference, the iOS engine currently utilizes the iOS built-in APIs for HTTPS.

Note: It is your responsibility to ensure that you comply with any and all requirements with regards
encryption usage – it is not something that can be done 'once' for the iOS engine as it (alone) does
not constitute an application nor does it (alone) actually utilize encryption, it merely provides the
means to do so.

50

http://blog.theanimail.com/iphone-encryption-export-compliance-for-apps
http://blog.theanimail.com/iphone-encryption-export-compliance-for-apps

Revision 30 – 2011-03-25 – Mark Waddingham

Noteworthy Changes

Scrolling problems (R18)

In previous builds, the browser, scroll and photo-picker features suffered a serious bug which
caused scrolling and related actions to stick/not-decelerate and generally not work correctly. These
problems have been resolved in this release.

Browser loadRequest changes (R18)

Due to technical limitations it has been necessary to change the loadRequest callback feature of the
browser native control.

The loadRequest message is now only sent if the delayRequests property has been set to true (it is
false by default).

When using the browser with delayRequests set to true, please bear in mind that any loads into sub-
documents will end up being loaded into the main view meaning many websites will not function
correctly.

With delayRequests set to false, websites will load as they should however you will not be able to
prevent load requests from taking place.

URL progress parameter order (R18)

In previous builds the parameter order of the urlProgress message was inconsistent with both other
callbacks in the iOS engine, and the libUrl status callback.

This has been rectified in this build. The urlProgress message now has the url as the first parameter
rather than the second.

Scripts that make use of this feature will need to be updated and swap the first two parameters
around.

Initial orientation handling (R20)

The engine will now read the initial orientation and supported orientations from the plist on startup,
and uses these values to initialize the 'allowed orientations' and to ensure the initial orientation is as
expected.

For more details see the orientation handling section.

Font metrics (R20)

The vertical metrics (ascent/descent) have been adjusted slightly in this release to make them more
consistent with those on the Mac desktop. Assuming the chosen fonts match, then text layout on
screen in the IDE will now be much closer, if not identical, to that in the simulator or on a device.

Out-of-bounds scrolling (R20)

The properties unboundedHScroll and unboundedVScroll have been added to control the 'out-of-

51

Revision 30 – 2011-03-25 – Mark Waddingham

bounds' scrolling feature of group objects. If you are using this feature to provide the 'bounce' effect
when using a scroller control in conjunction with a group, then you must now explicitly set the
appropriate properties on the group. (Previously the behavior was always on).

Screen metrics (R25)

The screenRect and working screenRect properties have been changed to reflect the current
orientation of the device.

Examples:

• on an iPad for which the current orientation is landscape and the status bar hidden the
properties will both return (0, 0, 1024, 768).

• on a non-Retina iPhone in portrait with the status bar displayed, screenRect will be (0, 0,
320, 480) and working screenRect will be (0, 20, 320, 480).

• on a Retina iPhone in landscape with the status bar displayed and device resolution turned
on, screenRect will be (0, 0, 640, 960) and working screenRect will be (0, 40, 640, 960).

This change has been made as it is more consistent with transparent handling of orientation and
improves consistency with the now implemented screen snapshot feature.

Multi-channel sound playback (R29)

The behavior of iphonePlaySoundOnChannel has been adjusted in the case where there is no
sound currently scheduled, and the next is specified. This usage will now cause the sound to be
scheduled to play 'now', but instead of playing the channel will be prepared and then immediately
paused.

The previous behavior can be obtained by doing iphoneResumePlayingOnChannel immediately
after the play command, as this has no effect if the channel is already playing.

'Exits on Suspend' support (R30)

The support for changing the value of the 'Exits on Suspend' plist flag in standalone settings has
been removed and the property will always be YES. This flag was never directly supported and
having it set to NO causes the LiveCode engine to work incorrectly after it is resumed. Support will
be reintroduced in due course, when the issues related to its use are resolved.

52

Revision 30 – 2011-03-25 – Mark Waddingham

Change Logs and History

Engine Change History

pre-alpha-3 (2010-03-04) MW Initial version.
pre-alpha-4 (2010-03-05) MW Bold and italic font styles now honoured in font selection

Image picker no longer 'sticks' after selection
GIF images now display
Max width and height parameters added to iphonePickPhoto
Import snapshot no longer crashes

pre-alpha-5 (2010-03-11) MW Unicode text will now display
Umlauts and other non-ASCII characters will now display
Return key now causes a newline in fields
Crashes when changing image content have been fixed
Export snapshot now makes images with the correct colors
Rotating a non-masked images no longer causes corruption of the
image

pre-alpha-6 (2010-03-18) MW Answer command now returns its the chosen button in 'it'
Added support for detecting device orientation
Added support for setting interface orientation
Added basic support for CoreLocation
Refined control hit-test for touch handling so disabled controls
are not targetted.
mouseLoc now reports the correct y-coordinate
Added support for mail composition/sending
Corrected file handling functions interpretation of '/'
Added support for specialFolderPath()
Fixed problem with incorrect display of animated GIFs

pre-alpha-7 (2010-03-29) MW Added basic support for 'play <soundfile>'
Added support for 'beep' system alert
Added support for 'launch url'
Added support for 'the fontNames' and 'the fontStyles'
Added support for 'uniEncode' and 'uniDecode'
Added support for system date/time
Fixed issue with engine not picking up 'Oblique' fonts for italic
style
Fixed issue with unicode text not displaying in fields on load
Added support for 'engine' in 'specialFolderPath'

pre-alpha-8 (2010-04-12) MW Added support for targetting iPad
Added support for 'the systemVersion'
Added support for 'the machine'
Added support for 'the processor'
Fixed problem with orientation returning portrait mispelt
Improved responsiveness of image picker
Added support for iphonePickPhoto on the iPad

pre-alpha-10 (2010-08-12) MW Added support for 'play video <filename/url>'
Fixed issues with support for environment properties (the

53

Revision 30 – 2011-03-25 – Mark Waddingham

systemVersion, the processor, etc.)
Added support for 'the sound'
Fixed issue with garbage being returned from specialFolderPath
in some cases.
Added support for 'libUrlDownloadToFile'

pre-release-14 (2010-11-10) MW Added support for 'load url'
Added support for 'post url'
Added support for status bar configuration
Added support for building for appstore/ad-hoc
Added support for visual effects
Fixed issue with iphonePickPhoto crashing on iOS4
Fixed issue with some PNGs not displaying correctly
Fixed issue with graphic effects have inverted colors
Fixed issue with black screen appearing on startup
Fixed issues with landscape orientation mode

release-17 (2010-12-01) MW Added support for browser native control
Added support for scroller native control
Added support for querying current locale and preferred
languages
Added support for 'movieTouched' message while movie playing
Added supoprt for 'play stop' command while movie playing
Added support for building iOS apps with evaluation licenses
Added support for modal pickwheel, and hooked into option
menus
Changed support for orientation handling to leverage built-in iOS
mechanism
Fixed various glitches with movie playback
Fixed issue with entering accented characters with the iOS
keyboard
Fixed issue with visual effects not working correctly in non-
portrait orientation
Fixed issue with 'the mouseColor' causing a crash

release-18 (2010-12-10) MW Added support for opaque, alpha and backgroundColor
properties to all native controls.
Added ability to upload to FTP.
Added support for ask question/ask password
Added delayRequests property to browser to control loadRequest
message.
Changed urlProgress callback parameter order for consistency
Fixed bug with movie controller not working
Fixed bug with the browser load action not working
Fixed bug with scroller, browser and photo-picker not scrolling
correctly.
Fixed decelerating property name
Fixed common native control property getting (rect, visible etc.)
Fixed bug with browser not loading some pages correctly
Fixed bug with iphonePickPhoto not returning correct value

release-19 (2010-12-16) MW Added support for keyboardActivated and keyboardDeactivated.

54

Revision 30 – 2011-03-25 – Mark Waddingham

Improved 'pick' and option menu display for iPad
Hooked URL operation timeouts to the socketTimeout
Fixed bug with pick views not respecting orientation properly

release-20 (2010-12-19) MW Added support for setting keyboard type and return style
Added support for unboundedHScroll and unboundedVScroll
propertie.
Fixed return value of iphonePick command
Fixed alignment of ask dialog when no title
Fixed return value of ask dialog when nothing is entered
Fixed answer and other such commands not working in initial
preOpenStack/preOpenCard/openStack/openCard
Fixed issue with nested answer/ask dialogs
Fixed issue with nested orientationChanged messages
Revised and improved initial orientation handling
Made nomenclature for device and interface orientation
consistent
Improved vertical font metrics consistency with the desktop
(Mac) engine.
Made round rectangle corner radius consistent with desktop
engine.

release-21 (2010-12-21) MW Added support for the httpHeaders.
Added experimental support for multi-channel sound.
Fixed issue with iphoneControl commands not working with a
string id.
Fixed issue with pick-wheel not scrolling correctly.
Fixed issue with pick-wheel crashing after multiple shows.
Fixed issue with option menu popup not sending menuPick.

release-22 (2011-01-07) MW Added support for looping video (iOS 3.2 and later)
Fixed issue with stackfiles not saving on iOS
Fixed crash on startup when running on iOS 3.1.3 device
Fixed movieTouched message handling on iOS 3.1.3
Further improved vertical font metrics consistency with the
desktop (Mac) engine

release-23 (2011-01-14) MW Added support for remaining UIWebView properties
Added ability to determine display scale (retina, or non-retina)
Added support for visual effects in sub-regions
Fixed issue with type command and accented chars (9294)
Fixed issue with pick-wheel causing anomalous keyboard
behavior (9295)
Multi-channel sound is no longer considered experimental

release-24 (2011-01-24) MW Added support for revZip, revXML and dbSQlite externals
Added support for configuring the iOS 'idleTimer'
Changed iPad popup lists to dismiss after select
Fixed issue with iphonePickPhoto not working correctly with
camera import (9303)
Fixed issue with export/import snapshot not working correctly
(9307)
Fixed issue with interface orientation on startup (9314)

55

Revision 30 – 2011-03-25 – Mark Waddingham

Fixed issue with 'the files' and 'the folders' being urlEncoded
release-25 (2011-01-30) MW Added support for import/export snapshot from rect (9343)

Added support fetching camera info: iphoneCameraFeatures()
Added support for picking from specific camera
Added support for different background colors to flip visual
effect
Added support for listing native controls: iphoneControls()
Added support for creating named native controls
Added support for clearing pending interactions with
iphoneClearTouches
Change screenRect properties to take into account orientation.

release-26 (2011-02-04) MW Fixed issue with movie playback with controller on 3.2 (9319)
Fixed issue with topLeft of stack being incorrect (9371)

release-27 (2011-02-08) MW Fixed issue with sound when movie 'shrunk' on 3.2 (9319)
release-28 (2011-03-04) MW Added support for system identifier: iphoneSystemIdentifier()

Improved ask dialog implementation (9379)
Fixed issue with pixel properties requiring open stack (9419)
Fixed issue with non-breaking spaces causing compile issues

release-29 (2011-03-09) MW Added experimental support for 'player' native control
Added experimental support for 'input' native control
Added experimental support for network reachability tracking
Added experimental support for playing sections of video
Added support for preparing a sound on a channel without
playing
Added support for pausing and resuming a sound channel
Added support for querying a sound channel's status
Fixed issue with rotation and movie playback (9409)

release-30 (2011-03-13) MW Added experimental support for improved email composition
Fixed issue with stack positioning after movie playback (9409)

release-31 (2011-03-15) MW After further testing and consideration, removed 'experimental'
status from native player control.
After further testing and consideration, removed 'experimental'
from improved email composition support.
Improved interoperability of play video and native player control
on iOS < 4.2.

release-32 (2011-03-16) MW Made all iphoneComposeMail arguments are optional.
Tweaked iphonePick to use checkmark on iPad.
Fixed bug with iphonePick not returning 0 if nothing selected.

release-33 (2011-03-17) MW Support for pattern fills has been implemented.
release-34 (2011-03-18) MW After further testing and consideration, removed 'experimental'

status from native input control.
Improved iphonePickPhoto on iPad to make it display relative to
the target and allow orientation changes.
Added 'inputReturnKey' message to native input control.
Added 'enabled' property to native input control.
Fixed issue with orientation lock when displaying fullscreen
movies from UIWebViews and native player controls.
Fixed issue with stack view not being placed corrected after

56

Revision 30 – 2011-03-25 – Mark Waddingham

returning from fullscreen movies.
Fixed issue with opaque property not taking effect properly.
Fixed issue with streaming playback not working player control.
Fixed issue with player control not preparing movies after
changing filename.
Changed player loadState property to a set, as it should be.

release-35 (2011-03-21) MW Fixed memory leak in backgroundPattern support.
Fixed crash when doing 'ask' without a 'titled' clause.
Fixed file access mode when doing 'open file' with no mode.

release-36 (2011-03-25) MW Fixed issue with iphonePick initial index not working on iPhone

iOS Deployment Change History

pre-alpha-3 (2010-03-04) MW Initial version.
pre-alpha-4 (2010-03-05) MW Bundle identifier setting no longer lost on reload
pre-alpha-5 (2010-03-11) MW Project settings are no longer lost when adding/removing files
pre-alpha-10 (2010-08-12) MW Added support for configuring SDK roots

Added support for adding folders of files to the app bundle.
pre-release-14 (2010-11-10) MW Added support for ad-hoc and store profiles

Added support for specifying a splash screen
Added support for copying in icons of different resolutions
Added support for plist configuration
Fixed issue with app bundle not being deleted before rebuilding

release-17 (2010-12-01) MW Integrated plugin's functionality into IDE
Simulate start/stop buttons replaced by single menubar 'Simulate'
button
Deploy button replaced by standard 'Save as Standalone
Application' action
Plist editor integrated as new Standalone Builder pane
Simulator selection moved to Simulator Version menu item of
Development menu
SDK configuration moved to 'Mobile Support' pane of
preferences
Added support UIFileSharingEnabled plist tag
Added ability to choose device type for simulator (iPad/iPhone)
Fixed issue with launch image filenames not being correctly
computed (and thus failing to copy into the bundle)

release-18 (2010-12-10) MW Added 'Simulate' menu item to menubar
release-19 (2010-12-16) MW Simulator options now remembered as global preferences

Simulator options filtered by minimum version and device family
in Standalone Settings.
Appropriate warnings and messages added when invalid folders
are included in the app bundle via 'Copy Files'

release-20 (2010-12-18) MW Improved UI for orientation settings in standalone builder.
Fixed issue with wrong provisioning profile being included when
more than 9 are installed.
Fixed issue with Simulate getting confused with some stack
names.

release-21 (2010-12-21) MW MinimumOSVersion now correctly included in plist

57

Revision 30 – 2011-03-25 – Mark Waddingham

release-22 (2011-01-07) MW Added support for DataGrid
Added support for UIPrerenderedIcon plist tag

release-23 (2011-01-14) MW No changes
release-24 (2011-01-24) MW Added support for including revZip, revXML and dbSqlite

externals (to be improved later).
release-25 (2011-01-30) MW No changes
release-26 (2011-02-04) MW No changes
release-27 (2011-02-08) MW No changes
release-28 (2011-03-04) MW Added support for iOS 4.3 simulator and device builds

Improved code-signing identity detection and use
release-29 (2011-03-09) MW Added support for including custom fonts (iOS 3.2+)

Added support for including custom externals
Fixed issue with deploying to 4.2 simulator

release-30 (2011-03-13) MW Removed 'Exits on Suspend' option from settings pane and
forced to always be YES.

release-31 (2011-03-15) MW No changes.
release-32 (2011-03-16) MW Fixed issue where not setting the bundle version explicitly would

block the Application Loader from uploading an app.
release-33 (2011-03-17) MW Fixed issue with identities containing non-ASCII characters not

working,
Fixed issue with splash image requiring a relative path in
educational and personal editions.

release-34 (2011-03-18) MW No changes.
release-35 (2011-03-21) MW No changes.
release-36 (2011-03-21) MW No changes.

Document History

Revision 1 (2010-03-04) MW Initial version.
Revision 2 (2010-03-05) MW Added documentation for new iphonePhotoPick parameters
Revision 3 (2010-03-11) MW Improved consistency of syntax specifications and use

Refined documentation for touch events
Added new section about mouse events
Added new section on restrictions to dynamic features
Restructured headings to make sure PDF index works

Revision 4 (2010-03-18) MW Added section on orientation handling
Added section on location handling
Refined statements about the mouseLoc
Refined description of touch handling with regard to hit-testing
Clarified support for dynamic chunks
Added section on email composition
Added section file handling
Clarified blocking behavior of non-file url's

Revision 5 (2010-03-29) MW Added section on system alerts
Added section on sound support
Added section on url launching
Added section on font querying
Added description of engine parameter to specialFolderPath

Revision 6 (2010-04-12) MW Revised setting up your system with regard iPad support

58

Revision 30 – 2011-03-25 – Mark Waddingham

Added section on hardware and system version querying
Revision 7 (2010-08-12) MW Revising initial sections to include details of SDK configuration

and requirements.
Revised 'Sound file support' section to include 'the sound'.
Added 'Video file support' section.
Revised 'Non-file url' section to include 'libUrlDownloadToFile'
Revised 'The revMobile Plugin' section to include changes to UI.
Revised 'Projects and Files' section to include details about
adding folders.

Revision 8 (2010-09-16) MW Rebranded from revMobile to iOS Deployment
Rebranded from rev* to LiveCode
Removed section on dynamic language features as no longer
relevant.

Revision 9 (2010-11-10) MW Various edits to improve language.
Expanded section on url commands
Added section on visual effects
Added section on status bar configuration
Revised 'The Deployment Plugin' section
Revised the non-test deployment section
Added a section on the plist editor
Added a section on launch images
Added a section on splash images

Revision 10 (2010-12-01) MW Rewrote and reorganised initial sections to reflect new
integration into the IDE.
Rewrote section on orientation handling.
Added section on native controls and further sub-sections on
browser and scroller controls.
Added section of locale and system language query support.
Revised the play video section.

Revision 11 (2010-12-04) MW Added section on 'Engine Version'
Revision 12 (2010-12-10) MW Corrected iphoneControlDestroy to iphoneControlDelete

Corrected declerationRate to decelerationRate
Corrected description of flashScrollIndicators
Added a section on common control properties and actions
Added section on out-of-bounds group scrolling
Added section on noteworthy changes
Updated browser control section
Updated movie playback section
Updated non-file URL section
Updated orientation handling section to describe how to lock
orientations to a specific set on startup

Revision 13 (2010-12-16) MW Correct description of 'the sound'
Added section on 'copy files restrictions'
Added section on 'encryption compliance'
Updated keyboard section with new messages

Revision 14 (2010-12-19) MW Revised section on orientation handling
Added a note about URL format to non-file URL access section
Added note about nesting to ask/answer dialog section

59

Revision 30 – 2011-03-25 – Mark Waddingham

Added a note about 'go in window' to stacks/windows section
Added a note about changes to out-of-bounds scrolling
Updated keyboard section with new commands
Updated out-of-bounds scroll section with details of new
properties.

Revision 15 (2010-12-22) MW Added section on multi-channel sound support.
Updated non-file URL access with details of the httpHeaders.

Revision 16 (2011-01-07) MW Updated video playback section to describe how to loop
Updated 'what doesn't work' to mention painting tools

Revision 17 (2011-01-14) MW Updated browser control section with new properties
Updated resolution handling section to mention
iphoneDeviceScale()

Revision 18 (2011-01-24) MW Added section of configuring the idle timer.
Added section on externals.
Updated section on what does/what doesn't work to include
externals correctly.

Revision 19 (2011-01-30) MW Added a section on snapshot capabilities
Added a section on querying camera capabilities
Added a section on handling pending interactions
Updated native controls section to mention control listing and
naming
Updated section on visual effects to mention new flip behavior

Release 20 (2011-02-04) MW Corrected description of mediaPlaybackRequiresUserAction
Release 21 (2011-02-08) MW No changes
Release 22 (2011-03-04) MW Added mention of iphoneSystemIdentifer() to hardware querying

section.
Added reference to 4.3 SDK in installation section.

Release 23 (2011-03-09) MW Added section on native 'player' control
Added section on native 'input' control
Added section on network reachability tracking
Added section on including custom fonts
Added section on including custom externals
Updated section on video playback to mention playing sections
of video
Updated section on multi-channel sound to mention pause,
resume, status and preparing.

Revision 24 (2011-03-13) MW Updated section on email composition
Updated noteworthy changes section
Replaced all curly double quotes with plain double quotes
Corrected borderStyle 'round' to be 'rounded'

Revision 25 (2011-03-15) MW Improved notes on iOS version compatibility of native player
control.

Revision 26 (2011-03-16) MW Clarified iphonePick command behavior.
Revision 27 (2011-03-17) MW Corrected iphoneComposeMail syntax.
Revision 28 (2011-03-18) MW Corrected iphoneComposeEmail to iphoneComposeMail

Corrected content to filename in native player control.
Updated section on iphonePickPhoto to mention iPad behavior.
Updated section on native input control to mention changes.

60

Revision 30 – 2011-03-25 – Mark Waddingham

Updated section on native player control to mention changes.
Clarified that iphonePick indices are 1-based.
Changed support for native player control to be iOS 4.0+.

Revision 29 (2011-03-21) MW Updated screenshots as appropriate.
Revision 30 (2011-03-25) MW No changes.

61

	Overview
	Getting Started
	Choosing an SDK
	Configuring LiveCode
	Configuring an iOS standalone
	Running in the simulator
	A first project
	Building for a real device

	Configuring an iOS Application
	Setting plist options
	Adding a SpringBoard icon
	Adding a default launch image (commercial)
	Adding a splash image (personal and educational)
	Adding a default launch image (trial)
	Adding custom fonts
	Adding custom externals
	Copy files restrictions

	General Engine Features
	Engine version
	What doesn't work
	What does work
	Debugging
	Windowing and Stacks
	System Dialogs – answer and ask
	Non-file URL access
	Out-of-bounds group scrolling
	Externals
	Snapshots

	iOS-specific engine features
	Multi-touch events
	Mouse events
	Motion events
	Accelerometer support
	Photo Picking Support
	Keyboard Input
	Configuring keyboard type
	Activation notifications

	Orientation handling
	Auto-rotation support
	Querying orientation
	Controlling auto-rotation
	Orientation changed notification
	Initial orientation handling

	Resolution handling
	Location handling
	Email composition
	Basic support
	Advanced support

	File and folder handling
	System alert support
	Basic sound playback support
	Multi-channel sound support
	Playing Sounds
	Channel Properties
	Managing Channels

	Video playback support
	URL launching support
	Font querying support
	Visual effect support
	Status bar configuration support
	Locale and system language query support
	Hardware and system version query support
	Modal Pick-Wheel support
	Idle Timer configuration
	Querying camera capabilities
	Clearing pending interactions
	Network reachability checking (experimental)
	iOS Native Controls
	All controls (UIView)
	Properties

	Browser control – UIWebView
	Properties
	Actions
	Messages

	Scroller control – UIScrollView
	Properties
	Actions
	Messages

	Player control – MPMoviePlayerController
	Properties
	Actions
	Messages

	Input control – UITextField
	Properties
	Actions
	Messages

	Miscellaneous Information
	Encryption Compliance – HTTPS

	Noteworthy Changes
	Scrolling problems (R18)
	Browser loadRequest changes (R18)
	URL progress parameter order (R18)
	Initial orientation handling (R20)
	Font metrics (R20)
	Out-of-bounds scrolling (R20)
	Screen metrics (R25)
	Multi-channel sound playback (R29)
	'Exits on Suspend' support (R30)

	Change Logs and History
	Engine Change History
	iOS Deployment Change History
	Document History

